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               Food allergies have emerged as a pressing global health concern, 

particularly in industrialized countries. Recent advances in immunology and 

microbiome research highlight the critical role of gut microbiota in 

modulating immune responses and shaping susceptibility to food allergies. 

Dysbiosis in microbial composition is increasingly associated with severe 

allergic responses and reduced immune regulatory activities. This review 

paper thoroughly examines the complex association between gut microbiota 

and food allergy, using latest human cohort research, animal models, and 

molecular insights. Key aspects addressed include early-life microbial 

colonization, immune system imprinting, and the role of microbial 

metabolites in immune tolerance. In addition to short-chain fatty acids 

(SCFAs), emerging modulators such as bile acids (acting through FXR and 

TGR5 pathways) and indole derivatives (activating the aryl hydrocarbon 

receptor to promote IL-22 production) are evaluated for their 

immunoregulatory potential. Emerging microbiome-targeted therapies, 

including probiotics, prebiotics, synbiotics, faecal microbiota transplantation 

(FMT), and tailored dietary regimens, are examined comprehensively for 

their therapeutic potential. Informed by a critical appraisal of 172 peer-

reviewed studies published through 2025, this review identifies key 

microbial signatures of tolerance and proposes microbiota-targeted strategies 

for prevention and treatment. Emphasis is placed on early-life interventions 

and the integration of multi-omics platforms to translate microbial insights 

into clinically actionable solutions for managing food allergies. 

 

INTRODUCTION 

               Food allergies (FAs) are an increasingly prevalent immunological disorder, affecting 

an estimated 32 million people in the United States alone, including approximately 8.0% of 

children and 5.0% of adults (Elghoudi and Narchi, 2022). The global incidence of food 

allergies has escalated in the last twenty years, especially in developed countries, prompting 

significant concerns about public health, nutritional habits, and immune system development 

(Rennie et al., 2023). Food allergies are defined by inappropriate immune responses to food 

antigens, mostly mediated by immunoglobulin E (IgE), which is responsible for the majority 

of clinically severe reactions, including anaphylaxis (Carnazza et al., 2025). Genetic 

predisposition plays a role in susceptibility, but environmental variables, particularly those that 

impact the early-life gut microbiota, are increasingly acknowledged as crucial determinants of 

immunological tolerance.  

http://www.eajbsc.journals.ekb.eg/
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                A primary growing emphasis is the 

function of gut microbiota in influencing food 

allergy sensitivity and response (Fofanova et 

al., 2016; Hoskinson et al., 2024). The gut 

microbiome is a complex and dynamic 

community of bacteria that plays a role in 

metabolic control, epithelial integrity, and 

immunological conditioning (Zhao et al., 

2023). Recent research indicates that 

disturbances in microbial diversity, especially 

during infancy, are significantly linked to the 

onset of allergic disorders, including food 

allergies (Khalil et al., 2024). In addition to 

fundamental allergy sensitization, there is 

increasing interest in the correlation between 

gut microbiota and food allergen cross-

reactivity, a phenomena where structurally 

similar antigens from diverse foods elicit 

overlapping immune responses. 

               This cross-reactivity is believed to 

arise from both common amino acid 

sequences (>70%) and conserved three-

dimensional structures and physicochemical 

characteristics (Trier and Houen, 2023). It is 

to mention that microbiota-derived antigens, 

such as lipopolysaccharides (LPS), may 

mimic dietary proteins, triggering or 

modulating these cross-reactive responses 

through molecular mimicry and immune 

priming mechanisms (Rojas et al., 2018). 

Commensal microbes such as 

Bifidobacterium and Lactobacillus have been 

shown to support the development of 

regulatory T cells (Tregs) and enhance 

production of immunoglobulin A (IgA), both 

of which are crucial for promoting immune 

tolerance and maintaining intestinal 

homeostasis (Mazziotta et al., 2023). 

Dysbiosis, characterized by an imbalance in 

microbial populations, has been linked to 

enhanced gut permeability, known as 'leaky 

gut,' impaired epithelial barrier function, and 

increased antigen exposure to mucosal 

immune cells (Christovich and Luo, 2022). A 

significant molecular connection between 

microbiota and immunological regulation is 

found in the function of microbial 

metabolites, especially short-chain fatty acids 

(SCFAs) including acetate, propionate, and 

butyrate. SCFAs are generated from bacterial 

fermentation of dietary fibers and have shown 

the ability to enhance Treg development by 

inhibiting histone deacetylases (HDACs) and 

activating G-protein coupled receptors (e.g., 

GPR43, GPR109A) (O'Riordan et al., 2022; 

Silva et al., 2020). In mouse models, SCFA 

supplementation has shown protective 

benefits against allergen-induced anaphylaxis 

by reinstating immunological tolerance. 

                  Furthermore, early-life exposures, 

delivery method, nursing practices, antibiotic 

use, and the timing of food introduction may 

profoundly influence microbial succession 

and immune imprinting (Stephen-Victor et 

al., 2020). Vaginal birth and exclusive 

breastfeeding correlate with enhanced 

colonization by advantageous anaerobes such 

as Bifidobacteria, while Cesarean sections 

and early antibiotic treatments are related 

with dysbiosis and a heightened risk of atopic 

illnesses (Davis et al., 2022; Inchingolo et al., 

2024). Numerous studies indicate that 

microbial immaturity during these crucial 

periods might disrupt oral tolerance and bias 

immune responses towards a Th2 profile, 

which is fundamental to allergy illness (Dogra 

et al., 2021). Probiotic and microbiome-

targeted therapeutics are emerging as possible 

interventions, with clinical studies using L. 

rhamnosus GG, B. longum, and FMT 

demonstrating efficacy in modifying immune 

function and restoring microbial equilibrium. 

Nonetheless, heterogeneity in strain 

effectiveness, host response, and long-term 

safety continues to pose a barrier (Gulliver et 

al., 2022; Hitch et al., 2022). This review 

offers an in-depth examination of the 

relationship between gut microbiota and food 

allergy, focusing on mechanisms of cross-

reactivity, microbial diversity, and 

immunological tolerance. This review seeks 

to connect essential microbiological 

discoveries with clinical approaches to tackle 

the pressing immunological issues of the 21st 

century by synthesizing results from murine 

and human investigations and emphasizing 

current progress in microbiota-targeted 

therapies. 
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Methodology: 

            This narrative review was based on a 

systematic search and critical appraisal of 172 

peer-reviewed studies published up to July 

2025. Literature was identified using 

PubMed, Web of Science, and Scopus, 

employing Boolean combinations of 

keywords such as gut microbiota, food 

allergy, immune tolerance, early-life 

programming, and microbial metabolites. 

The search strategy prioritized studies 

published up to 2025, with special emphasis 

on research from 2021 onward with inclusion 

criteria as: (1) original research or systematic 

reviews, (2) relevance to gut microbiota and 

food allergy, (3) studies involving humans, 

animal models, or immunologically relevant 

in vitro systems, and (4) English language 

whereas the exclusion criteria included non-

peer-reviewed items, insufficient 

methodology, inaccessible full texts, or lack 

of relevance to immune-microbiota 

mechanisms. Articles were screened in two 

phases: (1) title/abstract screening and (2) 

full-text review. A total of 376 records were 

initially identified, of which 172 were deemed 

eligible and included. The selection process is 

illustrated in Figure 1 (PRISMA-style 

summary). 

 

 
Fig. 1: PRISMA-style summary of literature selection. Flow of studies included in this 

narrative review, from initial identification to final inclusion. 

 

Food Allergy: Epidemiology, Mechanisms, 

and Clinical Spectrum: 

                Clinically, there are three different 

categories of food allergies (FA) depending 

on the immunological processes involved, 

which include a range of immune-mediated 

adverse responses to dietary proteins: types of 

allergies: IgE-mediated, non-IgE-mediated, 

and mixed-type (Calvani et al., 2020; Meyer 

and Palmer, 1934). Activation of mast cells 

and basophils by allergen-specific IgE 

antibodies characterizes IgE-mediated 
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responses, which comprise most acute clinical 

presentations and occur within minutes to 

hours after allergen exposure. Urticaria, 

angioedema, gastrointestinal problems, or 

even anaphylaxis might be symptoms of these 

responses (Anvari et al., 2019). For example, 

in food protein-induced enterocolitis 

syndrome (FPIES), where T-cell driven 

inflammation produces vomiting, diarrhoea, 

and failure to thrive without IgE involvement, 

symptoms often manifest delayed in the 

gastrointestinal tract (2-48 hours post-

exposure) (Nowak-Węgrzyn et al., 2017). 

Eosinophilic esophagitis (EoE) is a mixed-

type response that combines elements of both 

routes. It causes persistent inflammation and 

stricture development in the oesophagus via 

eosinophilic infiltration and occasional IgE 

sensitization (Anvari et al., 2019; Dellon et 

al., 2018; Vitte et al., 2022). The intricacy of 

FA categorization is highlighted by emerging 

research that implies other subtypes, such as 

delayed IgE-mediated responses requiring 

basophil priming (Shah et al., 2021). 

Especially in developed countries, the 

incidence of FAs has been steadily rising; 

recent estimates put the global prevalence at 

8-10% in children and 4-6% in adults (Gupta 

et al., 2018). Peanut allergies impact less than 

half of children in rural African communities, 

whereas 3% of children in the US have 

challenge-confirmed allergies (Joyce et al., 

2018). 

                 Due to the inexplicable quick 

increase, this epidemiological trend rules out 

genetic predisposition as the only cause. The 

hygiene theory has given way to the 

"microflora hypothesis," which states that the 

immune system is impaired during 

development because of diminished 

microbial exposures caused by factors like as 

early antibiotic usage (OR=1.4), ultra-

processed foods, and Caesarean deliveries 

(which are linked to a 30% increased risk of 

FA) (Marenholz et al., 2017). This review 

article adds to our understanding of the 

mechanisms at work by demonstrating that 

delayed oral allergen introduction, in 

conjunction with cutaneous sensitization due 

to poor skin barriers (as seen in eczema 

patients), enhances Th2-skewing (Gray, 

2020). Children residing in urban areas have 

FA rates that are two to three times greater 

than those in rural areas, indicating a clear 

correlation between urbanization and FA 

prevalence (Maestre et al., 2024; Morandini 

et al., 2023). The disintegration of oral 

tolerance mechanisms is at the heart of food 

allergy pathophysiology, with various FA 

subtypes using separate pathways. Dietary 

antigens undergo processing by dendritic 

cells that go to mesenteric lymph nodes in 

IgE-mediated responses; this process is 

facilitated by dysbiosis-induced barrier 

failure (Chinthrajah et al., 2016). By secreting 

IL-4, IL-5, and IL-13, these antigen-

presenting cells drive B-cell class flipping to 

IgE production, promoting Th2 

differentiation (Wang et al., 2019). Acute 

symptoms are caused by histamine, 

leukotrienes, and prostaglandins released 

when mast cells degranulate in response to 

allergen cross-linking of FcεRI-bound IgE 

upon re-exposure. EoE is characterized by 

fibrosis generated by TGF-β and eosinophil 

recruitment mediated by IL-5/IL-13, while 

non-IgE processes in FPIES include T-cell 

activation driven by IL-17A/IL-15 (Dellon et 

al., 2018). New evidence suggests that the IL-

33/ST2 axis has a key role in dysbiosis, 

especially in the absence of butyrate-

producing bacteria, in enhancing Th2 

responses (Ge et al., 2025). Exercise, 

nonsteroidal anti-inflammatory drugs 

(NSAIDs), and alcohol all have a role in 

increasing the absorption of allergens, which 

may lead to a wide range of clinical 

manifestations, from acute urticaria to chronic 

oesophageal strictures. 

               Modulating FA risk is a complicated 

interaction of hereditary, environmental, and 

behavioural variables. Twin concordance 

rates of 30–50% and relationships with 

filaggrin mutations (OR=3.2 for peanut 

allergy) are indicators of a hereditary 

susceptibility (Gupta and Margolis, 2020). 

The critical interaction between genes and the 

environment may, however, be epigenetic 

alterations caused by metabolites produced by 

microbes. Factors during pregnancy greatly 
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affect the course of risk; for example, the 

chance of FA increases by 30% with a 

caesarean section, while the chances of 

protective Bifidobacterium colonization 

increase with a vaginal birth and 

breastfeeding (Rautava et al., 2012). Equally 

important are dietary habits during weaning; 

a research called LEAP found that high-risk 

babies whose peanuts were introduced early 

on (between four and six months) had an 81% 

reduction in peanut allergy symptoms 

(Lankireddy and Hopkins, 2024). There is a 

correlation between a rise in FA prevalence 

with modern lifestyle factors such as eating 

ultra-processed foods, which is linked to a 

40% reduction in microbiota diversity, not 

getting enough vitamin D, and being exposed 

to particulate matter (Nascimento et al., 

2023). During the most malleable stages of 

development, from prenatal up until about the 

age of three, these risk factors seem to have 

the greatest impact on the immune system and 

microbial programming (Zhang et al., 2024). 

The Human Microbiota: Composition, 

Function and Development: 

                The human gastrointestinal tract 

harbours an extraordinarily complex 

microbial ecosystem, comprising 

approximately 100 trillion microorganisms 

that collectively weigh up to 2 kg in adults 

(Yarahmadi et al., 2024). Most of this 

community consists of bacteria, specifically 

Firmicutes (60–65%) and Bacteroidetes (20–

25%). However, new multi-omics methods 

have shown that archaea, viruses (mainly 

bacteriophages), and fungi (Saccharomyces 

and Candida species) also play a significant 

role (Aggarwal et al., 2022). Through 

complex interactions across kingdoms, these 

organisms carry out essential functions. For 

example, butyrate and other SCFAs are 

produced by microbes' fermentation of 

indigestible polysaccharides; these can 

supply up to 10% of the body's daily caloric 

needs. Additionally, these organisms regulate 

the host's metabolism through G-protein 

coupled receptors (GPR41/43) 

(Thulasinathan et al., 2025). The microbiota 

also synthesizes essential vitamins (B12, K2) 

and bioactive compounds (tryptophan 

metabolites) that modulate systemic 

immunity (Shaw et al., 2023). Spatial 

metatranscriptomics was used to demonstrate 

that the mucosal-associated microbe 

(Akkermansia muciniphila) directly regulate 

epithelial tight junction proteins (claudin-3, 

occludin) through extracellular vesicle 

signalling, while luminal communities 

specialize in dietary fiber breakdown (Melo-

Marques et al., 2024). Modern, 

contamination-controlled research has 

disproved the long-established "sterile 

womb" theory by finding trace amounts of 

microbial DNA in amniotic and placental 

fluid, mostly from Lactobacillus and 

Propionibacterium species (Milani et al., 

2017).  Prevotella and Lactobacillus are 

common in the microbiota of babies born 

vaginally, whereas Staphylococcus and 

Corynebacterium are more common in those 

born via caesarean section, and 

immunomodulatory Clostridia take longer to 

colonize these babies (Coscia et al., 2021; 

Suárez-Martínez et al., 2023). Human milk 

oligosaccharides (HMOs) play a significant 

role in breastfeeding by feeding 

Bifidobacterium longum subsp. Infantis, a 

kind of bacteria that has specific clusters of 

genes that metabolize HMOs and improve the 

function of the intestinal barrier (Masi and 

Stewart, 2022). While the microbiota settles 

into an adult-like composition by the time a 

child reaches the age of 3, the first thousand 

days of life are crucial for immunological 

programming, during which microbial 

metabolites, especially butyrate, 

epigenetically control regulatory T cell FoxP3 

expression by inhibiting histone deacetylase 

(Tang et al., 2025). By the time they reach 

school age, children whose microbial 

succession patterns are ideal i.e., when 

Bifidobacterium predominates early on and 

Clostridia acquires the majority gradually 

have 60% reduced rates of food sensitivity, 

according to longitudinal cohort studies (Yao 

et al., 2021). Several intrinsic and extrinsic 

factors influence the composition and 

stability of the gut microbiota. These include: 

➢ Diet: The dietary factors are now 

known to have the greatest impact on the 
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ecology of microbes. In comparison to 

Western diets, the polyphenol and fiber-rich 

Mediterranean diet enhances microbial gene 

richness by 30% and raises SCFA production 

proportionally (Barber et al., 2023). Omega-3 

fatty acids increase the number of 

Lachnospiraceae (which is negatively related 

to peanut allergy, p = 0.002), and artificial 

sweets, such as saccharin, boost the 

proliferation of Bacteroides, which is 

connected to Th2 skewing (Del Duca et al., 

2022). 

➢ Antibiotics: The use of antibiotics 

throughout a baby's first six months of life 

leads to a condition called chronic dysbiosis. 

New research shows that macrolides select for 

Enterobacteriaceae bacteria resistant to 

antibiotics, while simultaneously reducing 

Bifidobacterium abundance for two years or 

more (Shayista et al., 2025). According to 

adjusted analysis, there is a threefold greater 

incidence of food allergies up to age 6 in 

children who were exposed to systemic 

antibiotics during the neonatal period (OR = 

2.89, 95% CI = 1.34-6.92, P = 0.01) (Ofri et 

al., 2025). 

➢ Environmental exposures: 

Exposures to the environment: 

Environmental factors have effects that 

depend on the dose, but the "farm effect" is 

still strong; for example, compared to their 

urban peers, Amish children have 40% more 

microbial diversity and 5-fold more 

Faecalibacterium prausnitzii, a butyrate 

producer, which correlates with 70% lower 

rates of food allergies (Stein et al., 2016). As 

a result of improved TGF-β signalling, having 

a pet lowers the incidence of eczema (OR=0.6) 

in newborn intestines by increasing 

Lactobacillus and lowering E. coli (Tun et al., 

2017). 

➢ Breastfeeding vs. Formula Feeding: 

The methods of feeding, such as 

breastfeeding or formula feeding, leave 

permanent marks on the immune system. 

Bifidobacterium, accounting for 90% of all 

bacteria in a breastfed infants microbiome, 

transforms HMOs into galacto-

oligosaccharides, which have an 

immunoregulatory effect (Wong et al., 2024). 

On the other hand, babies that are given 

formula have more variety in their 

microbiome but more Proteobacteria, which 

is linked to 2.3 times more food sensitivity in 

at-risk populations (Chong et al., 2022). In 

cases when breastfeeding is not an option, 

there is some evidence that pasteurized donor 

milk may be a good substitute, helping to 

maintain some of the microbiome advantages 

(Cacho et al., 2017). 
Microbiota–Immune System Interactions: 

Gut–Immune Axis: 

                 In a well-coordinated network 

known as the gut-immune axis, components 

of the host immune system interact directly 

with commensal microbiota to promote 

tolerance and immune surveillance (Zheng et 

al., 2020). Intestinal mucosa cells, especially 

those in the gut-associated lymphoid tissue 

(GALT), are responsible for this dynamic 

communication via molecular and cellular 

signalling (Fig. 2). More than 70-80% of the 

body's immune cells are in GALT, which 

includes Peyer's patches, isolated lymphoid 

follicles, and mesenteric lymph nodes. GALT 

is essential for antigen sampling and immune 

conditioning (Forchielli and Walker, 2005). 

Lymphoid regions activate T and B cell 

responses after M cells in the follicle-

associated epithelium transport dietary and 

luminal microbial antigens to underlying 

dendritic cells (DCs) (Nakamura et al., 2018). 

Functional heterogeneity in gut DC subsets 

has been shown by single-cell RNA 

sequencing. While 

CD11b⁺CD64⁺macrophages sustain tolerance 

by means of IL-10 signalling, 

CD103⁺CD11b⁺DCs are concentrated in the 

lamina propria and stimulate peripheral Tregs 

by means of retinoic acid and TGF-β 

production (Bain et al., 2017). Intestinal 

epithelial cells (IECs) and innate lymphoid 

cells (ILCs) work together with these myeloid 

subgroups to adjust mucosal immunity. To 

detect microbes, pattern recognition receptors 

(PRRs) such toll-like receptors (TLRs) and 

receptors that are like NODs play an essential 

role. For instance, as shown in Figure 2, 

TLR5 can identify bacterial flagellin and 

stimulate Treg development; in contrast, 
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TLR4, which can detect LPS, may moderate 

immunological tolerance at low 

concentrations but can start inflammation 

when strongly activated (Yu et al., 2024). 

Crucially, cytokines including IL-25, IL-33, 

and thymic stromal lymphopoietin (TSLP) 

are secreted by epithelial cells, which actively 

influence immunological tone. These 

variables, especially when present in 

dysbiosis, might cause immune responses to 

become more polarized toward Th2, which in 

turn can lead to allergy sensitization 

(Stanbery et al., 2022). Duodenal biopsies 

from children with IgE-mediated food 

allergies demonstrate increased production of 

epithelial-derived alarmins (TSLP and IL-

33), which correlates with greater eosinophil 

counts and mucosal inflammation (Schmidt et 

al., 2014). 

 
Fig. 2: Interaction between gut microbiota, microbial metabolites, and immune regulation. 
 

Tolerance vs. Sensitization: Role of 

Microbiota and Immune Regulations: 

                Especially throughout 

development, the commensal microbiota is 

crucial in determining immunological 

tolerance. In the absence of microbiota, germ-

free (GF) animal models show a 90% 

decrease in FoxP3⁺ regulatory T cells in the 

colon and an imbalanced Th2 response to 

allergens (Belkaid and Hand, 2014). 

Restorative colonization with certain 

microbial taxa may bring the immune system 

back into balance. As an example, the growth 

of Tregs is enhanced by Clostridia clusters IV 

and XIVa via the induction of TGF-β and IL-

10 through pathways that are confined to 

MHC-II (Kamada and Núñez, 2014). 

Likewise, a multi-center metagenomic study 

indicated that infants with food allergies by 

the age of one had lower levels of faecal 

Clostridia (-55% reduction) and higher levels 

of Enterobacteriaceae (+180%) in the first 

100 days of life, lending credence to the idea 

that Bifidobacterium infantis promotes PD-

L1 expression on dendritic cells and 

encourages the formation of tolerogenic 

immune circuits (Azad et al., 2015; Zhou et 

al., 2022). In addition, daily treatment with 

Bifidobacterium breve BB99 resulted in a 

substantial rise in Treg counts (+47%) and a 

30% decrease in oral food challenge 

reactivity, according to a randomized 

controlled experiment that included 88 

children with proven egg allergy (Palmer et 

al., 2017). It has also been shown that 

dysbiosis, an abnormality in the normal 

microbial ecology, may worsen sensitivity. 

The release of IL-33 and the activation of 
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basophils via the ST2 receptor are both 

increased when pathobionts like E. coli and S. 

aureus overgrow (Teufelberger et al., 2018). 

This, in turn, enhances IgE production and 

allergen responsiveness. A decreased 

microbial diversity (Shannon index −38%) 

and higher levels of inflammatory markers, 

such as faecal calprotectin and β-defensins, 

are routinely seen in stool samples from 

persons with allergies (Heinzel et al., 2024). 

As a potential treatment option, FMT has 

become more popular. Anaphylaxis severity 

was decreased by 70% in mouse models of the 

disease when FMT was performed on peanut-

sensitized animals from healthy donors. This 

reduction was mainly due to the development 

of colonic Tregs driven by IL-10 (Chernikova 

et al., 2022). 

               Researchers are now studying 

(GUT-ALL: NCT05872144) the 

effectiveness of encapsulated FMT in 

alleviating symptoms and sensitization in 

children with food allergies (Huang et al., 

2024). Diet, microbiota, and immunological 

function are metabolically connected via 

microbial metabolites, particularly SCFAs. 

The fermentation of dietary fibers by 

anaerobic bacteria, such as Faecalibacterium 

prausnitzii and Roseburia species, produces 

SCFAs such acetate, propionate, and butyrate 

(O'Riordan et al., 2022). Butyrate has the 

strongest immunoregulatory characteristics of 

any of them. By promoting mucus formation 

and controlling the expression of tight 

junctional proteins, butyrate helps keep the 

intestinal epithelial barrier intact (Siddiqui 

and Cresci, 2021). It inhibits histone 

deacetylase 3 (HDAC3) at physiological 

concentrations (>1 mM in the colon), which 

increases Treg activity by increasing 

acetylation of the FoxP3 gene locus. To 

further modulate SCFA signalling and 

regulate myeloid and T cell lineages, GPR43 

and GPR109A receptors are involved (Bakshi 

and Mishra, 2025). Reduced faecal butyrate 

has been associated in human trials with 

elevated blood IgE levels and more severe 

allergy reactions (Wang et al., 2024). 

Propionate, on the other hand, influences 

bone marrow haematopoiesis, which in turn 

has systemic effects (Liu et al., 2023; Lucas 

et al., 2018). In the research work on mice 

given a high-propionate diet, Tan et al. (2016) 

examined the improvement in oral tolerance 

to β-lactoglobulin as a result of a 15% 

increase in tolerogenic CD103⁺ DCs (Tan et 

al., 2016). 

              The immune system is influenced by 

additional new metabolites. Epithelial 

integrity is improved by 12,13-diHOME, 

which is generated by certain strains of 

Lactobacillus, via the upregulation of tight 

junction proteins (claudin-4, occludin) (Lynes 

et al., 2017). In a similar vein, indole-3-

aldehyde, which is produced by 

Bifidobacterium, enhances IL-22 production 

and promotes mucosal healing by activating 

the aryl hydrocarbon receptor (AhR) 

(Abdulqadir et al., 2023). Similarly, bile 

acids, particularly secondary bile acids, 

interact with host receptors such as farnesoid 

X receptor (FXR) and Takeda G-protein 

receptor 5 (TGR5), modulating dendritic cell 

activation and promoting regulatory T cell 

(Treg) differentiation. These findings 

underscore the broader landscape of 

microbiota-derived metabolites in shaping 

host immune responses and tolerance 

mechanisms relevant to food allergy. 

Contrary to what one would expect, low 

levels of systemic butyrate (<0.5 mM) might 

paradoxically activate mast cells and amplify 

allergic inflammation, even as high levels of 

luminal butyrate (>2 mM) promote barrier 

function and Treg induction (Folkerts et al., 

2020). These results provide credence to the 

idea that butyrate-conjugated nanoparticles 

should be targeted for distribution; in mouse 

models, they decreased peanut-induced 

anaphylaxis by 80%, and studies are now 

underway to determine their efficacy in 

people (Wang et al., 2023). 

Dysbiosis and Food Allergy: 

Evidence from Animal Models and Human 

Studies: 

             There is strong evidence that 

dysbiosis of the gut microbiota contributes to 

the pathophysiology of food allergies, as 

shown in experimental research using germ-

free and antibiotic-treated animal models 
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(Uzbay, 2019; Zhang et al., 2021). When 

exposed to food antigens, germ-free (GF) 

mice show an overactive Th2-type immune 

response, defined by increased levels of IL-4, 

IL-5, and IL-13 (Rivas et al., 2013). 

Additionally, these mice have a significant 

decrease in the quantity of FoxP3⁺ regulatory 

T cells (Tregs), suggesting that their ability to 

tolerate oral substances is impaired. A return 

to immunological homeostasis was shown 

when GF mice were colonized with certain 

microbial consortiums, most notably 

Clostridia clusters IV and XIVa. These 

species cause the cells in the colon to release 

TGF-β and encourage the formation of Tregs, 

which in turn reduces the synthesis of IgE 

specific to allergens and the degranulation of 

mast cells. Polukort et al. (2016) conducted 

groundbreaking research where they found 

that when Anaerostipes caccae colonized GF 

mice, the allergic reactions to ovalbumin were 

reduced by 75%. At the same time, the levels 

of IL-10 and TGF-β in the mesenteric lymph 

nodes were elevated (Polukort et al., 2016). In 

a similar vein, an increased incidence of food 

allergies has been associated with antibiotic-

induced microbiome depletion. Peanut 

protein challenge revealed elevated serum 

IgE levels and intestinal permeability in mice 

treated with metronidazole, neomycin, or 

vancomycin. These effects were minimized 

by restoring microbial balance using FMT 

from healthy donor mice, highlighting the 

causative role of microbial dysbiosis (Guo et 

al., 2019; Ray et al., 2021). More and more 

evidence from human cohort research links 

certain microbial profiles to food allergy 

susceptibility and symptoms. Fewer helpful 

commensals like Bifidobacterium, 

Faecalibacterium, and Clostridia and more 

pro-inflammatory taxa like Escherichia coli, 

Klebsiella, and Enterobacter are often seen in 

infants with IgE-mediated food allergies 

(Farnetano et al., 2024; Koc et al., 2025). 

                Nooij et al. (2025) conducted recent 

multicentre metagenomic profiling research 

of 350 children. They found that the 

abundance of Ruminococcus gnavus was the 

microbial risk score that predicted the 

emergence of food allergies with >90% 

sensitivity (Nooij et al., 2025). Additional 

longitudinal data from the CHILD cohort 

research showed that being colonized by B. 

breve and A. muciniphila in early childhood 

was negatively linked to developing 

numerous food allergies by the age of three 

(Ismail et al., 2016; Saturio et al., 2021). 

Allergenic newborns have a diminished 

ability for ecological resilience, as seen by 

persistently lower levels of alpha diversity 

measurements (Shannon and Chao1 indices). 

In addition, metagenomes of children who 

suffer from long-term food allergies reveal an 

increase in bacterial virulence genes and LPS 

manufacturing pathways while decreasing the 

amount of SCFA-producing enzymes (Zhao 

et al., 2023; Zhu et al., 2024). When 

comparing allergic individuals to healthy 

controls, functional metatranscriptomic 

studies showed that the former had reduced 

expression of butyryl-CoA:acetate CoA-

transferase while the latter had elevated levels 

of nitrate-reducing enzymes (Zhang et al., 

2020). Table 1, summarizes major microbial 

taxa reported in the literature as being either 

protective against or promotive of food 

allergy. 
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Table 1: Key Microbial Taxa Implicated in Food Allergy Protection or Risky 

S. 

No. 
Micrbial Taxon Immune role 

Implication 

in FA 
References 

1 
Clostridia (Cluster 

IV, XIVa) 

Promotes Treg 

differentiation via TGF-

β and IL-10 

Protective 

Kamada & Núñez, 

2014; Abdel-Gadir 

et al., 2019 

2 
Bifidobacterium 

longum ssp. infantis 

Enhances epithelial 

barrier; induces PD-L1 

on dendritic cells 

Protective 
Azad et al., 2015; 

Palmer et al., 2017 

3 
Faecalibacterium 

prausnitzii 

Butyrate producer; 

reinforces tight junction 

proteins 

Protective 
Stein et al., 2016; 

Mo et al., 2024 

4 Lactobacillus spp. 

Produces indole 

derivatives; activates 

AhR pathway 

Protective 

Lynes et al., 2017; 

Abdulqadir et al., 

2023 

5 
Enterobacteriaceae 

(e.g., E. coli) 

Promotes Th2 skewing; 

increases IL-33 and 

TSLP 

Risk 

Teufelberger et al., 

2018; Heinzel et 

al., 2024 

6 
Ruminococcus 

gnavus 

Associated with 

increased LPS 

biosynthesis and antigen 

presentation 

Risk Nooij et al., 2025 

7 Staphylococcus spp. 

Pathobionts linked to 

dysbiosis and epithelial 

disruption 

Risk 
Beharry et al., 

2023 

 

Mechanistic Insights: Barrier Function, 

Inflammation, And Antigen Presentation: 

                 The disruption of mucosal 

immunity and the facilitation of allergen 

sensitization are two of the many ways in 

which gut dysbiosis leads to food allergies. 

Intestinal permeability may rise, the gut's 

barrier function can change, and the immune 

cell balance can shift, especially about T 

regulatory cells (Tregs), which play a key role 

in preserving tolerance. 

➢ Barrier dysfunction: When it comes 

to protecting the host immune system against 

luminal antigens, the intestinal epithelial 

barrier is the first line of defence. Goblet cells 

that secrete mucus, epithelial tight junctions, 

intraepithelial lymphocytes, and 

antimicrobial peptides make up this 

multilayered structure (Faderl et al., 2015). 

The production of mucins (like MUC2) and 

AMPs (such RegIIIγ and defensins) is 

improved by the microbiota, which plays a 

crucial role in controlling barrier function via 

microbial-epithelial interaction. It is well-

documented that commensals such as 

Faecalibacterium prausnitzii and 

Akkermansia muciniphila enhance the 

production of tight junction proteins (such as 

claudin-1, occludin, and ZO-1) and the 

integrity of the epithelium (Fig. 3) (Mo et al., 

2024; Wade et al., 2023). 
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Fig. 3: Mechanistic pathways linking dysbiosis to food allergy. 
 

               

Reduced SCFA synthesis and mucosal barrier 

breakdown are symptoms of dysbiosis, an 

imbalance in the microbiome that allows food 

antigens to translocate into the lamina 

propria. The stimulation of antigen-

presenting cells and the skewing of naïve T 

cells toward Th2 differentiation, which is 

hallmark of allergic disease, are both caused 

by this increased permeability, sometimes 

known as "leaky gut" (Christovich and Luo, 

2022). Tight junction proteins like claudin-1, 

occludin, and ZO-1 are compromised when 

dysbiotic changes occur, especially when 

butyrate-producing organisms like 

Faecalibacterium prausnitzii and Roseburia 

disappear. When antigens from the luminal 

compartment are able to translocate into the 

subepithelial tissues, a condition known as 

"leaky gut" occurs  (Bowie et al., 2012). In 

comparison to controls who did not have food 

allergies, individuals with food allergies had 

faecal zonulin levels that were three times 

higher and claudin-1 levels that were 2.8 

times lower (Bergmann et al., 2020; Bhat et 

al., 2020). Restoring barrier function, 

suppressing serum IgE, and reducing 

anaphylaxis severity by 60-70% were all 

outcomes of colonizing germ-free or 

antibiotic-treated mice with butyrate-

producing Clostridia (Abdel-Gadir et al., 

2019). 

➢ Inflammatory signalling: The 

development and severity of food allergies 

may be influenced by dysbiosis, an imbalance 

in the gut microbiota, which can lead to 

inflammatory signalling. This link 

emphasizes the role of gut bacteria in 

immunological regulation, which in turn may 

impact the way the body reacts to food 

allergies. The immune system relies on 

pattern recognition receptors (PRRs) to detect 

microbial-associated molecular patterns 

(MAMPs) (Carding et al., 2015). Toll-like 

receptors (TLRs) particularly TLR2, TLR4, 

and TLR5 and NOD-like receptors (NLRs) 

mediate microbial signal transduction and 

shape mucosal immunity. Overrepresentation 

of Proteobacteria, particularly E. coli and 

Klebsiella, promotes IL-33 and TSLP 

secretion from intestinal epithelial cells. 

These cytokines promote IgE class flipping in 

B cells and push dendritic cells toward a Th2-

polarizing phenotype by boosting IL-4/IL-5 

production. An even stronger reaction is 

elicited by ILC2s with high levels of ST2 

receptor expression (Stanbery et al., 2022). 

The activation of tolerogenic dendritic cells 

(tDCs) to secrete retinoic acid and IL-10 by 

commensal flagellin enhances regulatory T 

cells (Treg) responses (Hoang et al., 2019). 
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Evidence suggests that TLR4 has a dual 

regulatory function; although low-dose LPS 

exposure increases tolerance via IL-10 

induction, high-dose LPS exposure promotes 

Th2 sensitization. For example, Bacteroides 

fragilis secretes polysaccharide A (PSA), 

which acts via processes reliant on Toll-like 

receptor 2 (TLR2) to generate IL-10+ 

regulatory T cells (Tregs) (Ramakrishna et 

al., 2019). Early-phase studies have shown 

that FMT from healthy donors into peanut-

sensitive patients may restore Treg profiles 

and decrease allergen reactivity (Gray, 2020). 

Clinical studies found that children with FA 

exhibit elevated TLR4 and TLR9 expression 

on intestinal monocytes, associated with 

reduced Treg:Th2 ratios (Szebeni et al., 

2008). 

➢ Altered antigen presentation: 

Dysbiosis can alter antigen 

presentation, increasing the risk of food 

allergies. These changes in the gut's microbial 

composition, can lead to heightened IgE 

responses and skewed T-cell differentiation 

towards a Th2 response, which is 

characteristic of allergic reactions.  Dysbiosis 

alters dendritic cell maturation and antigen 

presentation profiles. In allergic individuals, 

DCs in lamina propria show elevated OX40L 

expression and decreased PD-L1, favouring 

effector T cell activation over tolerance (Iriki 

et al., 2023; Wythe et al., 2012). SCFA 

deficiency also downregulates Aldh1a1, 

impairing retinoic acid synthesis, a factor for 

Treg induction. 

➢ SCFAs and postbiotics in tolerance 

induction: SCFAs such as butyrate, acetate, 

and propionate are produced via anaerobic 

fermentation of non-digestible 

polysaccharides by gut microbiota. SCFAs 

function as potent immune-modulatory 

molecules that support epithelial repair, 

modulate immune cell activity, and induce 

tolerance to food antigens. Butyrate, for 

instance, inhibits histone deacetylases 

(HDACs), thereby enhancing the acetylation 

of histone H3 at the FOXP3 locus, promoting 

regulatory T cell (Treg) development 

(Siddiqui and Cresci, 2021). Recent trials 

have shown that children with milk or peanut 

allergy have significantly lower faecal SCFA 

levels compared to healthy controls (p < 

0.01), especially butyrate and propionate 

(Goldberg et al., 2020). Supplementation 

with butyrate-releasing nanoparticles in 

murine models restored Treg frequency in the 

mesenteric lymph nodes by over 40%, 

reduced serum IL-4 and IL-13, and conferred 

protection from allergen-induced anaphylaxis 

(Tan et al., 2022). Beyond SCFAs, other 

postbiotics such as indole derivatives (e.g., 

indole-3-aldehyde) produced by 

Bifidobacterium spp. can activate the aryl 

hydrocarbon receptor (AhR), promoting IL-

22 secretion from innate lymphoid cells 

(ILCs), which reinforces epithelial integrity 

and mitigates allergic priming (Sajiir et al., 

2024). 

                Cumulatively, these mechanisms 

create a feed-forward loop of barrier 

dysfunction, microbial imbalance, and 

immune dysregulation, all contributing to 

food allergen sensitization (Ali et al., 2020). 

Targeted microbiome therapies, such as 

precision probiotics or SCFA-boosting 

interventions, are being explored as viable 

strategies to restore tolerance. 

Early-Life Microbiota and Immune 

Imprinting: 

Microbial Seeding During Birth: 

                The method of delivery is a pivotal 

determinant of an infant’s initial microbial 

landscape. Vaginally delivered neonates are 

inoculated with beneficial commensals from 

the maternal vaginal and faecal microbiota 

including Lactobacillus, Bifidobacterium, 

and Bacteroides. These play essential roles in 

early immune education and mucosal 

tolerance  (Milani et al., 2017; Tang et al., 

2025; Wong et al., 2023). In contrast, infants 

delivered via Cesarean section (C-section) are 

predominantly colonized by skin and 

environmental microbes, including 

Staphylococcus, Corynebacterium, and 

Propionibacterium species, and show delayed 

colonization by anaerobic bacteria critical for 

immune modulation (Beharry et al., 2023). 

Recent multicenter cohort studies link C-

section delivery to a higher risk of IgE-

mediated food allergies, independent of 
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antibiotic use and feeding practices (Yao et 

al., 2021). Infants born via C-section show 

reduced Clostridial diversity in the first six 

months, a pattern linked to increased 

sensitization to milk, egg, and peanut proteins 

(Rutayisire et al., 2016). 

Impact of Infant Feeding and Weaning: 

                 Breastfeeding is a crucial postnatal 

determinant of gut microbial colonization and 

immune system priming. Human milk is a 

bioactive matrix that supplies not only 

nutrients but also immunomodulatory 

components, including secretory IgA, 

lactoferrin, cytokines, and live maternal 

bacteria, along with human milk 

oligosaccharides (HMOs). The growth of 

beneficial bacteria in the gut is facilitated by 

HMOs, which are categorized as prebiotics. 

HMOs selectively promote the growth of 

Bifidobacterium longum subsp. infantis, a 

keystone taxon known to support Treg 

induction and reduce intestinal inflammation 

(Yang, Shuo et al., 2024). Many studies have 

demonstrated the changes in the gut microbial 

makeup between breastfed and formula-fed 

babies. Nursing supplies for the newborn are 

high in prebiotics, fatty acids, lactoferrin, and 

other essential nutrients that protect the infant 

against pathogenic infections, enhance barrier 

function, and boost immune function. 

Nursing is a great way to ensure that the infant 

receives all these benefits (Ballard and 

Morrow, 2013). Breast milk stimulates the 

development of the gut microbiota by 

delivering probiotics and prebiotics and 

giving protection against infections. The 

bacteria that are prominent in breast milk 

include Bifidobacterium, Lactobacillus, 

Staphylococcus, Bacteroides, Enterococcus, 

Streptococcus, and Clostridium (Collado et 

al., 2009). Preterm infants fed their own 

mother’s milk showed greater gut 

microbiome diversity, with more 

Clostridiales and Lactobacillales, than those 

given donor or formula milk. This is 

regardless of whether the children were 

breastfed or fed formula (Cong et al., 2016). 

Recent study has revealed the exclusive 

breastfeeding for at least 4–6 months is linked 

with a 30-40% reduction in food allergy risk, 

especially in infants with a family history of 

atopy. Breastfed infants show higher faecal 

concentrations of acetate and butyrate, which 

are known to enhance barrier integrity and 

immune tolerance (Danielewicz, 2022). 

Maternal Microbiome and Prenatal 

Influence: 

                   Beyond delivery and postnatal 

nutrition, the maternal microbiome exerts pre-

birth effects on the developing immune 

system of the newborn. Dysbiosis in the 

maternal gut or vaginal tract caused by diet, 

antibiotics, obesity, or gestational diabetes 

can influence foetal immune imprinting via 

microbial metabolites, transplacental 

cytokine signalling, and even microbe-

derived extracellular vesicles (Nyangahu and 

Jaspan, 2019). Other factors, such as the mode 

of delivery, breastfeeding, geographical 

location, living with siblings and furry pets, 

antibiotic treatment, and assisted reproductive 

technology, were found to have a significant 

influence on neonatal gut colonization, 

according to the findings of the TEDDY 

study, which involved six institutions in the 

United States and Europe and collected 

12,500 stool samples from over 900 infants 

(Stewart et al., 2018). A more recent 

prospective cohort (MELODY) study 

reported that maternal abundance of SCFA-

producing bacteria during the third trimester 

was inversely associated with neonatal cord 

blood Th2-skewing cytokines (IL-4, IL-13), 

suggesting transplacental tolerance 

imprinting (Peter et al., 2020). Furthermore, 

maternal intake of a high-fiber diet in late 

pregnancy was associated with a 25% lower 

incidence of food allergy in infants at 18 

months (Palmer et al., 2025). 

Antibiotic Exposure and Microbial 

Perturbation:  

                Early-life antibiotic exposure, 

particularly in the first 100 days, has profound 

and often long-lasting effects on microbial 

succession (Fig. 4). Antibiotics are more often 

given to premature and C-section babies, 

which raises their chance of developing 

conditions including obesity, inflammatory 

bowel disease, and asthma in the future. 

Antibiotic exposure during the perinatal 
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period may delay the maturation of microbial 

activity until around 6 to 12 months after birth 

(Chong et al., 2018). Broad-spectrum 

antibiotics reduce Bifidobacterium and 

Lachnospiraceae abundance, impair butyrate 

production, and alter Treg/Th17 balance 

(Fallani et al., 2010). Meta-analyses indicate 

that antibiotic exposure before age 1 is 

associated with a 1.8–2.5 times higher risk of 

food allergy, especially when combined with 

C-section or formula feeding (Ahmadizar et 

al., 2018). Conversely, environmental 

exposures such as pet ownership, farm 

residence, daycare attendance, and siblings 

promote microbial diversity and exposure to 

non-pathogenic endotoxins that help train the 

immune system. Peptostreptococcus bacteria 

are more prevalent, and Bifidobacterium 

bacteria are less prevalent in the gut 

microbiota of children who grow up with cats 

(Adamek et al., 2019). Infants reared in pet-

owning households had greater abundances of 

Peptostreptococcaceae, low levels of 

Bifidobacteriaceae, and animal-derived B. 

pseudolongum (Azad et al., 2013; Nermes et 

al., 2015). A recent study (FARMFLORA 

birth cohort; N = 65) showed that farm-

dwelling children had higher faecal microbial 

diversity and significantly lower rates of food 

sensitization under the age of 2 (12 months 

appropriate) (Ljung et al., 2024). Children 

with siblings likely to have more 

Bifidobacterium and less Peptostreptococcus 

bacteria. The KOALA Birth Cohort Study in 

the Netherlands indicated that children with 

older siblings had a greater abundance of 

Bifidobacteria and enhanced gut microbial 

variety and richness compared to newborns 

without siblings (Penders et al., 2007). A lack 

of older siblings was also related with early 

colonization by B. adolescentis, Clostridium, 

and C. difficile, whereas colonization by 

Bifidobacteria, Bacteroides, and 

Lactobacillus increased with larger number of 

siblings (Laursen et al., 2015). 

 
Fig. 4: Early-life microbial colonization and critical windows for immune development. 
 

               

               The timing of introducing allergenic 

foods is a critical window for immune 

education. Contrary to earlier beliefs 

advocating delayed introduction, landmark 

studies and trials have shifted paradigms by 

demonstrating that early introduction 

(between 4–6 months) of allergenic proteins 

like peanut, egg, and milk significantly 

reduces the risk of sensitization (Trogen et al., 

2022). Newer studies have shown that the 

benefits of early food introduction are 

amplified in the presence of a healthy, 

Bifidobacterium-rich microbiome (Beharry et 

al., 2023; Chan et al., 2018; Gupta and 

Sicherer, 2017). Infants introduced to peanut 

before 6 months who also had high faecal 
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butyrate levels were 80% less likely to 

develop peanut allergy at age 3 (Li et al., 

2025). Although further research is required 

to determine if this technique is applicable to 

low-risk groups, the early introduction of 

allergenic foods seems to be a successful 

strategy for reducing the public health burden 

of food allergies. 
Therapeutic and Preventive Strategies: 

Microbiota Modulation Approaches: 

                 Advances in our knowledge of the 

gut microbiota’s involvement in immune 

modulation have led to the development of 

numerous microbiota-targeted therapies 

aimed at avoiding or reducing food allergies. 

These techniques vary from live microbial 

supplementation to dietary and faecal 

therapies, each aimed to change microbial 

composition and functional outputs in ways 

that enhance immunological tolerance (Fig. 

5). Probiotics confer a health benefit when 

administered in adequate amounts such as L. 

rhamnosus GG and B. breve, which have 

shown promising clinical effects by 

promoting Treg differentiation, reducing 

inflammatory cytokines, and strengthening 

epithelial barrier integrity, thereby reducing 

allergic symptoms (Eslami et al., 2020; Gill et 

al., 2009; Mazziotta et al., 2023). 

Complementing this, Prebiotics such as inulin 

and fructo-oligosaccharides are non-

digestible fibers which serve as substrates that 

stimulate the growth of beneficial gut 

microbes and enhance SCFA production and 

improve gut barrier function, indirectly 

contributing to immune modulation (Kaur et 

al., 2021; Obayomi et al., 2024). When used 

in combination, Synbiotics aim to maximize 

these effects by simultaneously introducing 

beneficial microbes and supporting their 

growth (Bhatia et al., 2025; Markowiak and 

Śliżewska, 2017). While Postbiotics defined 

as non-viable microbial metabolites or 

components (e.g., SCFAs, bacteriocins) offer 

a promising alternative that exert health-

promoting effects. The emerging research 

suggests postbiotics may offer safer and more 

stable alternatives for allergy prevention 

(Rafique et al., 2023; Thorakkattu et al., 

2022). 

 
Fig. 5: Microbiota-targeted therapeutic strategies for food allergy prevention and treatment. 

 

                 

One particularly promising alternative/ 

method is faecal microbiota transplantation, 

which involves the transfer of healthy donor 

stool to restore microbial diversity. Though 

primarily used in Clostridioides difficile 

infections, preclinical studies in allergic 

mouse models have shown that FMT can 

reduce food allergy severity by restoring 

SCFA-producing bacterial populations (Cha 

and Sonu, 2025; Moya Uribe et al., 2025; 

Novelle et al., 2024). Challenges remain 

regarding donor selection, safety, and 

standardization for allergy applications, but 

FMT remains a promising avenue for further 

exploration (Karimi et al., 2024). Alongside 

these microbial strategies, dietary modulation 
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remains a cornerstone of prevention: diets 

rich in fiber, polyphenols, and fermented 

foods promote microbial diversity and 

increase levels of SCFAs, thereby enhancing 

immune tolerance (Aziz et al., 2024; Wastyk 

et al., 2021). While Western dietary patterns, 

characterized by high fat and low fiber, are 

linked to dysbiosis and increased allergy risk 

(Clemente-Suárez et al., 2023). Notably, 

early-life nutritional interventions such as 

exclusive breastfeeding and the adoption of 

Mediterranean dietary patterns are 

increasingly recognized for their capacity to 

influence microbiota development and lower 

the incidence of food allergies. Together, 

these microbiota modulation strategies 

represent a dynamic and evolving frontier in 

allergy prevention and therapy, with growing 

clinical evidence supporting their efficacy 

and expanding interest in personalized, 

microbiome-informed interventions. 
Advances and Limitations in Microbiome-

Allergy Research: 

Methodological Limitations: 

               One major limitation in the study of 

microbiota and food allergy is the small 

cohort size and heterogeneity among 

participants. Many studies are underpowered 

to detect meaningful associations, especially 

given the complex and dynamic nature of the 

microbiome. Also, the variations in age, 

geography, diet, delivery mode, and antibiotic 

exposure introduce significant confounding 

factors (Berg et al., 2020). Human microbiota 

composition is highly individualized, 

influenced by genetics, environment, and 

lifestyle. This variability makes it difficult to 

generalize findings and identify universal 

microbial biomarkers of disease (Xia et al., 

2025). Moreover, temporal variability even 

within the same individual complicates 

longitudinal assessments and causal 

inference. Establishing causality remains a 

major hurdle in microbiome research. Most 

human studies are observational, making it 

difficult to determine whether dysbiosis is a 

cause or consequence of food allergy (Flores 

et al., 2014). While animal models offer more 

controlled environments, translating findings 

to humans remains a challenge due to 

interspecies differences in microbiota 

composition and immune response. The 

methodologies used for microbiota profiling, 

such as 16S rRNA sequencing and 

metagenomic shotgun sequencing, introduce 

analytical biases. For example, 16S rRNA 

sequencing may lack resolution at the species 

level and is influenced by primer selection 

and database accuracy (Humphries and Daud, 

2018). 
Emerging Research Tools: 

                Multi-omics approaches integrate 

genomics, transcriptomics, proteomics, 

metabolomics, and microbiomics to provide a 

comprehensive understanding of host-

microbiota interactions. Metagenomic 

shotgun sequencing allows for functional 

profiling of microbial communities beyond 

taxonomic classification (Mohamed et al., 

2023; Pérez-Cobas et al., 2020). 

Metabolomics, particularly profiling of 

SCFAs and other microbial metabolites, 

enhances our ability to link microbiota 

composition with immune modulation and 

disease phenotypes (O'Riordan et al., 2022). 

Gnotobiotic models, including germ-free and 

selectively colonized mice, offer controlled 

systems to examine causal relationships 

between specific microbes and host 

immunity. These models have been 

instrumental in demonstrating that 

colonization with Clostridia species can 

induce Treg development and protect against 

food allergy (Faith et al., 2014). Humanized 

mouse models, colonized with human faecal 

microbiota, allow for the study of patient-

specific microbial influences on allergic 

outcomes (Arrieta et al., 2016; Moya Uribe et 

al., 2025; Yang, Shuai et al., 2024). Artificial 

intelligence (AI) and machine learning (ML) 

techniques are increasingly used to identify 

microbial patterns predictive of disease, 

classify complex microbiome data, and 

uncover hidden relationships between 

microbial features and clinical phenotypes 

(Dhaarani and Reddy, 2025; Li et al., 2024; 

Rozera et al., 2025). ML models can integrate 

multi-omics datasets to generate hypotheses, 

predict treatment response, and stratify 

patients based on microbial risk profiles. 
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Translating Insights to Clinical Practice: From 

Bench to Bedside: 

                Translating the expanding 

knowledge of microbiota-allergy interactions 

into effective clinical strategies represents a 

pivotal step toward personalized and 

preventive healthcare in allergy management. 

As the comprehension of host-microbiota-

immune interactions expands, several 

potential therapeutic and preventative 

strategies are advancing from experimental 

models to clinical use. A particularly exciting 

advancement is the emergence of tailored 

microbiome-based medicines. Progress in 

microbial sequencing, metabolomic profiling, 

and immunological testing is enabling 

customized dietary treatments that promote 

the proliferation of beneficial bacteria and the 

synthesis of immune-modulating metabolites, 

including short-chain fatty acids (SCFAs) 

(Hitch et al., 2022). These tailored 

techniques, including customized dietary 

regimens and specialized probiotic and 

prebiotic supplements, seek to enhance 

mucosal immunity, stimulate regulatory T 

cell (Treg) responses, and diminish the 

vulnerability to food allergies by rectifying 

certain microbial imbalances  (Ashique et al., 

2024; Ma et al., 2024). Longitudinal cohort 

studies are essential for delineating crucial 

periods of immunological imprinting and 

microbial growth. These studies provide 

insights on the optimal timing and methods 

for intervention by monitoring microbiome 

development from infancy to early childhood. 

The notion of early-life microbiome 

engineering, including maternal gut 

optimization during gestation and newborn 

supplementation with advantageous bacteria, 

has significant potential in mitigating the risk 

of atopic diseases, especially in genetically 

susceptible groups (Nunez et al., 2025). As 

microbiota-based treatments approach 

clinical implementation, regulatory and 

ethical issues become more vital. The lack of 

standardization in probiotic formulations, 

variability in FMT donor screening 

procedures, and uncertainties in long-term 

outcomes demand stringent clinical trial 

designs and clear guidelines (Parigi et al., 

2023). Paediatric applications need further 

vigilance owing to the susceptibility of 

growing immune systems. Additionally, 

ethical concerns like informed consent, 

patient data confidentiality, equitable access 

to microbiome therapeutics, and the 

commercialization of tailored interventions 

must be resolved to guarantee safe and 

equitable implementation. These translational 

projects highlight the significance of a 

multidisciplinary approach integrating 

microbiology, immunology, clinical research, 

ethics, and health policy to connect laboratory 

findings with practical applications in food 

allergy prevention and treatment. 
Conclusion 

              The growing prevalence of food 

allergy worldwide presents an urgent need to 

understand its underlying mechanisms and 

develop effective preventive strategies. 

Recent advances in microbiome science have 

highlighted the pivotal role of gut microbial 

communities in shaping immune 

development and oral tolerance. Evidence 

from animal models, human observational 

studies, and mechanistic investigations has 

demonstrated that alterations in the 

composition and function of the gut 

microbiota referred to as dysbiosis, are 

closely linked to the pathogenesis of food 

allergies. Key microbial metabolites, 

particularly short-chain fatty acids (SCFAs) 

like butyrate, play crucial roles in promoting 

regulatory T cell responses and maintaining 

epithelial barrier integrity. These findings 

have led to the development of microbiota-

targeted interventions including probiotics, 

prebiotics, synbiotics, faecal microbiota 

transplantation (FMT), and diet-based 

strategies. Despite significant progress, 

several challenges remain. These include 

methodological limitations in microbiome 

research, the need for larger and more diverse 

cohort studies, and the difficulty in 

establishing causality. Nevertheless, the 

integration of multi-omics approaches, 

gnotobiotic models, and machine learning 

technologies offers promising avenues for 

future exploration. Moving forward, 

personalized microbiome modulation and 
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early-life interventions hold potential to 

transform the landscape of allergy prevention 

and treatment. A multidisciplinary effort 

involving clinical research, microbiology, 

immunology, and data science is essential to 

fully harness the therapeutic potential of the 

gut microbiota in combating food allergies. 
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