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               Understanding the distinctive immunomodulatory processes of the 

breast cancer microenvironment will be crucial for the creation of novel 

therapeutic approaches. Cav-1's role in BC is still debated because it has been 

demonstrated to have a dual opposing role, functioning as both an oncogene 

and a tumor suppressor. Various studies reported the occurrence of a somatic 

mutation in Cav-1 in patients' primary breast tumors leading to the 

substitution of a proline amino acid-to-leucine at 132 (P132L) location. 

Therefore, the current study aims to examine the expression of Cav-1 in 

tissue samples of patients with breast cancer and assess the incidence of 

p132L point mutation of the Cav-1 gene in patients with breast cancer. The 

current study enrolled 50 patients with breast cancer, and the levels of 

expression of Cav-1 protein were measured by immunohistochemistry. 

Sequencing of amplified Cav-1 gene in sample groups was done to assess 

the incidence of a spontaneous mutation (P132L) inside the human Cav-1 in 

breast cancer patients.  The current results demonstrated the absence of 

P132L target point mutation in all Cav-1 downregulated Egyptian breast 

cancer patients (90%). Accordingly, the alteration in the expression level of 

Cav-1 in tissues of Egyptian patients with breast cancer is not due to the 

P132L target point mutation, but other factors may contribute to this down-

expression.  
  

INTRODUCTION 

              Globally, breast cancer (BC) represents the second leading cause of morbidity for 

women (Siegel et al., 2021). Over 521,900 fatalities globally have been attributed to 1.7 million 

women diagnosed with BC (De Silva et al., 2019; Fletcher et al., 2017). With over 95% of new 

cases being diagnosed in patients over 40, the incidence of BC-related deaths is predicted to 

increase by 20% (Saeg et al., 2018). Compared to patients in Western nations, Egyptian BC 

patients present at a younger age and exhibit more aggressive characteristics (Harwansh et al., 

2020; Schlichting et al., 2015). Clinical professionals could find novel diagnostic and treatment 

approaches to predict clinical outcomes and responses to treatment plans with molecular 

biomarkers for BC (Yamashiro et al., 2008). However, the prevalence of this disease is rising 

annually, and the process through which BC develops is still undefined (Saeg et al., 2018).  
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               Understanding the distinctive 

immunomodulatory processes of the breast 

cancer micro-environment will be crucial for 

the creation of novel therapeutic approaches 

(Hanamura et al., 2023). 

               Potential BC biomarkers include 

caveolae that invade plasma membranes are 

rich in proteins and involved in developing 

various human disorders (Mercier et al., 

2009). In addition to lymphocytes and 

neurons of the central nervous system, fat 

cells, endothelial cells, fibroblasts, 

pneumocytes, and muscle cells are abundant 

in caveolae (Razani et al., 2002). 

The caveolin proteins have a pro-vital role in 

the progress and preservation of caveolae. 

Caveolin-1 (Cav-1), Caveolin-2, and 

Caveolin-3 are the three members of the 

caveolin protein relatives. While Cav-3 is 

only found in some types of muscles, Cav-1 

is broadly expressed in many tissues (Totta et 

al., 2016; Wang et al., 2017). Furthermore, 

Cav-2 co-expresses with Cav-1 and needs 

Cav-1 for stability and localization of cell 

membrane (Totta et al., 2016; Parolini et al., 

1999).  

               Cav-1 is involved in numerous 

physiological functions, including signal 

transduction, molecular transport, and cell 

adhesion (Chai et al., 2019; Shaul and 

Anderson 1998; Sternberg and Schmid 1999). 

Cav-1's role in BC is still debated because it 

has been demonstrated to have a dual 

opposing role, functioning as both an 

oncogene and a tumor suppressor (Ren et al., 

2021; Patani et al., 2012a; Mercier et al., 

2012; Fu et al., 2017). Three exons make up 

the Cav-1 gene, which maps to chromosome 

7's long arm (7q31.1) near the fragile site 

(FRA7G), which is commonly found deleted 

in cancer. This finding supports the theory 

that Cav-1 is purpose as a tumor suppressor 

gene (Ren et al., 2021; Patani et al., 2012a). 

Recent research has revealed decreased levels 

of the Cav-1 protein in several human 

malignancies, including breast, ovarian, 

colon, lung, and sarcoma cancers. This 

indicates that Cav-1 has a negative regulatory 

function in tumor growth (Ren et al., 2021; 

Racine et al., 1999; Bender et al., 2000; 

Weichen et al., 2001a; Weichen et al., 2001b; 

Lee et al., 1998; Razani et al., 2001c; 

Williams et al., 2003; Sagara et al., 2004).   

               Caveolae need the caveolin-

scaffolding domain (CSD) To interact with a 

range of signalling molecules, such as SRC 

tyrosine kinases (i.e., c-SRC/FYN), protein 

kinase C (PKC), the epidermal growth factor 

receptor, ERB-B2 receptor tyrosine kinase 2 

(also known as HER2/neu), H-ras, and Neu 

and extracellular signal-regulated kinase 

(ERK) proteins (Lisanti et al., 2012). CSD 

domain is hypothesized to perform a tumor 

suppressor role to Cav-1 by attaching 

signalling proteins in a restricted shape 

through consensus caveolin-binding motif, 

hence adversely regulating numerous kinases 

(Ren et al., 2021; Patani et al., 2012b; Razani 

et al., 2002; Lisanti et al., 1994; Williams et 

al., 2004a).  

              Several breast cell lines showed 

decreased expression levels of Cav-1, such as 

MCF-7 and T47D (Bernatchez et al., 2020; 

Lisanti et al., 2012; Chen et al., 2019; 

Fridolfsson et al., 2014; Wu et al., 2008; Wu 

et al., 2007). Human Cav-1 overexpression 

reduces the transformed phenotype by 

decreasing anchorage-independent colony 

growth on soft agar, matrix invasion, and 

MMP-2 collagenolytic activity (Bernatchez et 

al., 2020; Fiucci et al., 2002; Engelman et al., 

1997). Several investigations discovered that 

Cav-1 serves as a suppressor of BC metastasis 

by modulating the activity of 

metallopeptidases (MMPs), which can 

increase tumor invasiveness and metastasis 

formation (Ren et al., 2021; Williams et al., 

2004b; Sloan 2004; Coussens et al., 1996). 

Generally, the expression of Cav-1 is linked 

to improved cell adhesion and decreased cell 

motility (Volonte et al., 2001; Zhang et al., 

2000). Transfection of murine Cav-1 up-

regulates BRCA1 in MCF7 cells via a p53-

dependent mechanism (Glait et al., 2006). 

Phosphorylation of serine or tyrosine, which 

directs Cav-1 for secretion, has been linked to 

function loss (Lee et al., 2000; Schlegel et al., 

2001). The loss of Cav-1 expression in 
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BCAFs has been linked to worse outcomes, 

including accelerated tumor growth, local 

metastasis, and ER negativity (Yeong et al., 

2018; WitkiewiczA et al., 2009c; El-Gendi et 

al., 2012; Kalluri et al., 2006; Tlsty et al., 

2011; Qian et al., 2011). 

             Cav-1 has also been linked to the 

regulation of PTEN (phosphatase-possessing 

tumor suppressor functions) (Caselli et al., 

2002). The loss of both Cav-1 and the INK4a 

locus, which encodes p16INK4a and p19ARF 

cell cycle regulators, is enough to cause 

immortalization (William et al., 2004c). It 

was found that in NIH/3T3 cells transformed 

by different oncogenes, such as v-Abl, Bcr-

abl, H-RasG12V, and polyomavirus middle T 

antigen (PyMT), there is a significant 

reduction in the levels of Cav-1 mRNA and 

protein expression (Koleske et al., 1995). It 

has been suggested that Cav-1 inhibits Wnt/β-

catenin/Tcf/Lef-1 signalling by retaining β-

catenin in the cell membrane and blocking the 

transcription of genes, such as cyclin D1 

(Hulit et al., 2000). Cav-1 over-expression in 

a metastatic mammary adenocarcinoma cell 

line (MTLn3) caused the cell to revert to a 

non-motile phenotype, suggesting that Cav-1 

can stop the growth and invasion of cells with 

metastatic properties (Lisanti et al., 2012).  

                It has been determined that stromal 

Cav-1 reduction in the cancer-associated 

fibroblast compartment is the only 

independent forecaster of clinical prognosis 

(Mercier et al., 2008; Witkiewicz et al., 

2009a, Witkiewicz et al., 2009b; Witkiewicz 

et al., 2010; Witkiewicz et al., 2009c; Sloan 

et al., 2009a). For example, in patients with 

breast cancer, stromal Cav-1 depletion 

predicts tamoxifen resistance, lymph node 

metastases, and early tumor recurrence. 

Therefore, a "fatal" tumor microenvironment 

can be indicated by the decreased stromal 

Cav-1 (Lisanti et al., 2010). Cav-1 

overexpression causes apoptotic cell death by 

inhibiting PI3-kinase and activating caspase-

3, suggesting that Cav-1 may play a pro-

apoptotic role (Zundel et al., 2000; Liu et al., 

2001). According to previous findings, the 

lack of stromal Cav-1 results in oxidative 

stress and autophagy in the tumor 

microenvironment, which in turn promotes 

the manufacture of recycled high-energy 

nutrients locally, which cancer cells can 

utilize to "fuel" their anabolic growth 

(Martinez-Outschoorn et al., 2010a; 

Martinez-Outschoorn et al., 2010b; Martinez-

Outschoorn et al., 2010c). 

               Various studies reported the 

occurrence of a somatic mutation in Cav-1 in 

patients' primary breast tumors leading to the 

substitution of a proline-to-leucine at 132 

(P132L) position (Lisanti et al., 2012). In a 

non-transformed human mammary epithelial 

cell line, it was demonstrated that the Cav-1 

P132L mutant mis-localizes and retains wild-

type endogenous Cav-1 intracellularly, 

functioning as a dominant-negative mutant 

(Li et al., 2006).  Therefore, in the setting of 

mammary epithelial cells, this heterozygous 

mutation results in the total functional 

suppression of the Cav-1 protein (Li et al., 

2006).  

              The response to chemotherapy and 

radiation therapy used to treat BC is 

influenced by Cav-1. Previous research 

demonstrated that stromal Cav-1 level has a 

pro-vital role in determining BC outcomes 

and that its modification in response to 

oxidative stress may help choose the optimum 

therapy (Martinez-Outschoorn et al., 2014; 

Sloan et al., 2009a). Another factor that may 

contribute to trastuzumab resistance in BC 

cells is Cav-1 (Pucci et al., 2015). As a result, 

the lack of Cav-1 and caveolae may be a 

prognostic or predictive indicator of 

trastuzumab therapeutic response (Pucci et 

al., 2015). On the other side, numerous 

studies hypothesized that Cav-1 might 

contribute to the emergence of tamoxifen 

resistance (Pucci et al., 2015). According to 

recent research, phosphorylation of Cav-1 

may have a key role in switching on a survival 

mechanism for cancer cells. This finding may 

inspire the development of new cancer 

treatment strategies (Jiang et al., 2022a). 

Therefore, the current study aims to examine 

the expression of Cav-1 in tissue samples of 

patients with breast cancer and assess the 

incidence of p132L point mutation of the 

Cav-1 gene in patients with breast cancer. 
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MATERIALS AND METHODS 

1-Patients’ Selection:  

             This current study was established on 

50 patients who were diagnosed with breast 

cancer at Ain Shams University Hospitals. 

Each patient was approved by the Institutional 

Review Board of Ain Shams University 

Hospitals Ethics Committee. Patients’ ages 

ranged from 33-67 years, with mean SE=38.8 

±1.9, who were diagnosed at stages II and III. 

2-Samples:   

             Tissue samples were collected from 

conservative breast surgery or modified 

radical mastectomy and ten ml peripheral 

blood was collected from patients before 

surgical operation. 

3-Immunohistochemistry (IHC) for Cav-1: 

3.1-Preparation of Paraffin Blocks: 

              First, fixation took place overnight in 

neutral buffered formalin, pH=6.8, (6.5 g 

sodium phosphate dibasic, 4 g sodium 

phosphate monobasic and 100 ml 

Formaldehyde, 37% dissolved in 900 ml 

distilled water) and infiltrated in paraffin.  

3.2-Tissue Section Preparation and 

Immunohistochemistry (IHC): 

               The tissue sections of 4 µm in 

thickness were cut from the paraffin-

embedded blocks using a microtome. After 

staining tissue sections with hematoxylin and 

eosin, they were mounted on positively 

charged slides and allowed to air dry for an 

entire night. Sections were mounted and then 

hydrated by immersing them three times in 

xylene for five minutes, followed by a 

decreasing sequence of alcohol (100%, 95%, 

80%, and 50%) for three minutes. Positive 

slides were incubated for an hour at 99ºC in a 

water bath with citrate buffer, pH=6 (2.1 g of 

citric acid dissolved in 1 L of distilled water). 

The slides were then allowed to come to room 

temperature before being immersed in two 

different concentrations of Tris-buffered 

saline TBS (0.05 mol/L Tris-HCl, pH 7.6, 

0.15 mol/L NaCl, and 0.05% tween 20) for 

five minutes each for washing. The slides 

were cleaned with TBS after being blocked 

for 10 minutes with 3% hydrogen peroxide 

(Dual Endogenous Enzyme block, Dako 

K4065). After that, they were incubated with 

a monoclonal primary antibody against Cav-

1 for an entire night at room temperature. The 

slides underwent two 5-minute TBS rinses, a 

45-minute room-temperature incubation with 

100 µl of peroxidase-labeled polymer 

rabbit/mouse, and a final 5-minute washing in 

TBS. After applying substrate and chromogen 

to the slides and letting them sit for five to ten 

minutes, the slides were cleaned with distilled 

water. The slides were counterstained by 

adding Mayer's hematoxylin. After rinsing 

the slides with tap water, increasing the 

alcohol concentration to dehydrate them, and 

eventually immersing them in xylene, 

mounting material was used to cover them 

(Fisher Scientific). 

4-PCR and Sequencing:  

              DNA extracted from tissue and 

blood were performed by using QIAamp 

DNA Mini kit (QIAGEN, Germany). The 

extracted DNA was subjected to 

amplification of the target trans-membrane 

domain and flanking sequences of Cav-1 gene 

with accession number (-NM001753-) by 

Polymerase Chain Reaction (PCR). In PCR, 

the current study used two primers to amplify 

210 bp from (39226 - 39435) DNA fragments 

corresponding to 70 amino acids which 

include the whole trans-membrane domain 

(amino acids 102 to 134) of Cav-1.  

The Sequence For Forward and Revere 

Primers Was: 

              5’ CCAGCTTCACCACCTTCACT 

3’ and 5’ CACAGACGGTGTGGACGTAG 

3’. The PCR program was modified in this 

way: first denaturation for five minutes at 95 

ºC, followed by thirty-five cycles of one 

minute at 95 ºC, one minute at 55 ºC, and one 

minute at 72 ºC for extension. Every sample 

underwent a 10-minute exposure to the final 

extension at 72 ºC before being stored at 4 ºC. 

            A gel purification kit (k0691) was 

used to purify the PCR product. Each sample 

was sequenced twice using the forward and 

reverse PCR primers in order to verify any 

potential mutations. The identical forward 

and reverse primers used in the PCR were 

used for sequencing 20 µl of each PCR 

product, 20 µl of the forward primer (10 

pmole/µl), and 20 µl of the reverse primer (10 
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pmole/µl). The Cav-1 PCR results from blood 

and breast cancer tissue samples were sent for 

sequencing to look for the presence of the 

P132L mutation. 

5-Statistical Analysis:  

              The data was analyzed using SPSS 

software version 18.0.  Data were expressed 

as mean ± standard deviation and correlations 

between categorical variables were assessed 

using the Spearman correlations test. 

RESULTS 

1-Clinical and Pathological 

Characteristics Of Patients: 

              Clinical and pathological 

characteristics are viewed in Table (1), 

including age, tumor grade, tumor size, lymph 

node metastasis, lymph vascular invasion and 

expression of estrogen receptor (ER), 

progesterone receptor (PR) and HER-2 as 

explained below: 

             The present study applied to patients 

with tumor sizes ranging from 2-10 cm (mean 

size 4.8). Tumor grade documented that 62% 

of patients were with tumors of grade II, 24% 

were with tumors of grade III and 14% of 

tumor samples were grade I. 

             About 60% of patients were classified 

as ≤ 4, while 40% of patients were classified 

as > 4. Among patients, 64% were negative 

lymph vascular invasion and 36% were 

positive lymph vascular invasion. 

              Hormonal receptors analysis:  

Thirty-eight percent of patients were positive 

ER, while 

62% of patients had negative ER. About 36% 

of patients were positive PR, while 64% of 

patients were negative PR. Thirty-eight 

percent of patients were positive for HER-2, 

while 62 % of patients were negative for 

HER-2. 

 
                                   Table 1: Patients and tumor characteristics. 

Characteristics N% 

Age (years) 

Mean± SD 

Range 

 

38.8± 9.825 

33-67 

Tumor size 

Mean 

Range 

 

4.8 

2-10 

Tumor grade 

Grade I 

Grade II  

Grade III 

 

7 (14) 

31 (62) 

12 (24) 

No. of metastatic lymph nodes 

≤4 

>4 

 

30 (60) 

20 (40) 

Lymph vascular invasion 

Positive 

Negative 

 

 

18 (36) 

32 (64) 

 

Estrogen receptor 

Positive 

Negative 

 

19 (38) 

31 (62) 

Progesterone receptor 

Positive 

Negative 

 

18 (36) 

32 (64) 

HER-2 

Positive 

Negative 

 

19 (38) 

31 (62) 
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2-Expression of Caveolin-1 Protein by 

Using Immunohistochemistry:  

           Immunohistochemistry results 

revealed that cytoplasmic and cellular 

membrane Cav-1 protein was expressed in 

five (10%) breast cancer patient samples, 

while it was down-regulated in forty-five 

(90%) samples (Fig. 1). 

 

 
Fig 1: Photomicrographs represent the IHC staining of Cav-1. (A) showing low protein 

expression, (B) showing strong staining of cellular membrane and cytoplasmic staining for 

Cav-1 (over expression of Cav-1 protein) (magnification X400). 

 

3-Lack of P132L Mutation In Breast 

Cancer Samples: 

            Sequencing results revealed the 

absence of the targeted point P132L mutation 

in all Cav-1 downregulated breast cancer 

samples (90%) at position 143-145 from the 

beginning of the forward primer of Cav-1 

where CTA replaces CCA which, when 

present leads to amino acid leucine replacing 

amino acid proline in position 132 of the 

amino acid sequence starting from the 

beginning of the open reading frame (Figs. 2 

& 3). 
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Fig 2: Alignment of sequence of cav-1 gene of breast cancer patients and their normal tissues. 
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Fig 3: DNA sequence of cav-1 gene using ABI PRISM model 3730XL analyzer software in 

(A) normal tissues, (B) breast cancer patient paraffin tissue, (C) breast cancer patient tissue, 

(D) blood of breast cancer patients.  

 

 

 



Absence of Caveolin-1 P132L Mutation in Egyptian Breast Cancer Patients 

 

165 

 

DISCUSSION 

The current study documented the 

absence of P132L target point mutation in all 

Cav-1 downregulated Egyptian patients with 

breast cancer (90%). Furthermore, the 

alteration in the expression level of Cav-1 in 

Egyptian tissues of patients with breast cancer 

is not due to the P132L target point mutation, 

but other factors may contribute to this down-

expression.   

Now, the most serious malignant 

tumor endangering women's lives is breast 

cancer (BC) (Siegel et al., 2021). BC is a very 

diverse category of tumors in terms of both 

molecular makeup and clinical presentation. 

A complicated interaction between growth 

factors, hormones, oncogene activation, and 

tumor suppressor gene inactivation occurs 

throughout normal breast development and 

breast carcinogenesis (Park et al., 2005). The 

control of breast cancer is to be inadequate in 

less developed and developed countries 

(Ezzat et al., 1999). Genetic screening of 

breasts plays a vital role in breast cancer 

prediction. 

Furthermore, premenopausal 

Egyptian women have high peripheral 

lymphocyte DNA damage levels and urinary 

estrogen metabolites, which are biomarkers 

for breast cancer prediction in Egyptian 

patients (Soliman et al., 2004). Because of 

several subtypes of BC, selecting a single 

therapy that applies to all patients is 

impossible. Several current therapeutic 

approaches are based on receptor status and 

tumor stage (Bravatà et al., 2013; Yamashiro 

et al., 2008). Over the past few decades, there 

has been a considerable change in the 

treatment strategy for BC patients, and there 

has also been a notable fall in the death rate 

among them.  

 Caveolae are cave-like plasma 

membrane structures implicated in 

controlling various cellular functions 

(Chidlow et al., 2010). Caveolae act as the 

site for cell surface protease 

compartmentalization (Cavallo-Medved et 

al., 2003). Caveolae consist of caveolins and 

associated cell surface proteases such as 

CTSB, a lysosomal cysteine protease, and 

uPA (a serine protease) (Cavallo-Medved et 

al., 2005). Besides three isoforms of 

caveolins (Cav-1, Cav-2, and Cav-3), the 

protein structure of caveolae has been 

noticed. Cav-1 and Cav-2 act as biomarkers 

for the "basal-like" phenotype in the breast 

carcinoma subfamily (Mercier et al., 2009).  

The current study showed that 

caveolin-1 protein was expressed in the cell 

membrane and the cytoplasm of 5 (10%) 

patients and downregulated in 45 (90%) 

patients. Previous studies showed that Cav-1 

could be found scattered in cells and not 

localized in the cell membrane invaginations 

of breast tumors and thus considered 

suppressed (Lee et al., 2002). 

Cav-1 high levels in the stromal tissue 

around a breast tumor have previously been 

found to be highly related to decreased 

metastasis and increased survival (Shan-Wei 

et al., 2012). According to earlier research, 

Cav-1 is downregulated in BC and acts as a 

tumor suppressor to impede BC's growth 

(Ren et al., 2021). Additionally, the previous 

findings demonstrated that reduced 

expression of Cav-1 is a potent indicator of 

tumor relapse. Clinically, people with 

prostate cancer or BC are more likely to have 

a bad effect if they have stromal Cav-1 

depletion (Ayala et al., 2013; Kibria et al., 

2014; Witkiewicz et al., 2009c). One 

proposed explanation for this up-regulation is 

the Cav-1-deficient fibroblasts showed 

increased expression of transforming growth 

factor-beta (TGFB), which was documented 

to induce epithelial Cav-1 expression and 

induce the epithelial-to-mesenchymal 

transition (Panic et al., 2017; Gottlieb-

Abraham et al., 2013). Loss of Cav-1 

expression has been correlated with larger 

tumor growth, a higher rate of nodal 

involvement, and more afflicted lymph nodes 

(El-Gendi et al., 2012; Witkiewicz et al., 

2009c; Mercier et al., 2008; Eliyatkin et al., 

2018; Finak et al., 2008). Recent research 

demonstrated that CAV-1 deficiency in 

fibroblasts increases TGF-1 secretion, which 

then activates the TGF-1/Smad signalling 
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pathway of BCCs, promoting their metastasis 

and stemness (Huang et al., 2022). 

Cav-1 is expected to limit anchorage-

independent growth while significantly 

reducing matrix-dependent MMP-2 

production and impairing invasive potential 

(Bernatchez et al., 2020; Fiucci et al., 2002). 

The previous study demonstrated that Cav-1 

expression prevented integrin-mediated 

activation of ERK1/2 (Fiucci et al., 2002). 

Additionally, Cav-1 confers resistance to 

anoikis in the MCF-7 cells despite inhibiting 

anchorage-independent growth (Bernatchez 

et al., 2020).  Recent research shows that Cav-

1 inactivates anchorage-independent growth 

in fibroblasts, which may indicate that it has 

an inhibitory effect on a proliferation signal 

dependent on growth factors or oncogenes. 

Cav-1 adversely affects cell proliferation in 

fibroblasts (Bernatchez et al., 2020; Chen et 

al., 2019; Galbiati et al., 2001; Razani et al., 

2001a). Likely, Cav-1 and P-glycoprotein 

overexpression is the cause of the loss of 

anchorage-independent growth and 

diminished metastatic potential detected in 

many MDR cells (Toula et al., 2004).  

According to earlier research, 

expression levels of cyclin D1 are 

significantly higher in Cav-1(-/-) null 

mammary lesions, which is consistent with 

the dysplastic foci's quick formation (Razani 

et al., 2001b). Primary embryonic fibroblasts 

carrying the Cav-1 (-/-) null allozyme showed 

enhanced rates of DNA synthesis and larger 

S-phase fractions, and they proliferated 

significantly quicker than their wild-type 

counterparts. Additionally, there is strong 

evidence that in transformed cells, expression 

of Cav-1 inhibited anchorage-independent 

growth and cellular proliferation (Bernatchez 

et al., 2020; Chen et al., 2019; Razani et al., 

2001b). Cav-1 overexpression suppresses 

cyclin D1 transcription, whereas its antisense 

expression raises cyclin D1 levels, proving 

that Cav-1 regulates cell growth (Hulit et al., 

2000). Therefore, it would be predicted that 

the rapid formation of dysplastic mammary 

foci in PyMT/Cav-1 (-/-) mice can be 

explained by the transcriptional up-regulation 

of cyclin D1 levels resulting from the loss of 

Cav-1 expression (Williams et al., 2003). 

From in vitro research on cultivated 

cells, Cav-1's function as a detrimental 

regulator of cellular proliferation is now well 

known (Chen et al., 2019; Fridolfsson et al., 

2014; Wu et al., 2007). In MCF-7 cells, 

caveolin-1 has anticancer action both in vitro 

and in vivo due to decreased cell proliferation 

and increased apoptosis (Chen et al., 2019; 

Fridolfsson et al., 2014; Wu et al., 2007). 

Cav-1 may serve as a coupling or sensitizing 

factor in the signalling of apoptotic cell death 

in epithelial and fibroblastic cells, increasing 

the sensitivity of fibroblasts to apoptotic 

stimuli (Zundel et al., 2000; Liu et al., 2001). 

Similarly, Gargalovic and Dory observed that 

higher Cav-1 expression in macrophages is 

related to cell apoptosis (Gargalovic and Dry 

2003). The previous findings showed that 

Cav-1 upregulation in MCF-7 cells elevated 

cancer cell death and decreased cancer growth 

in vitro and in vivo (Wu et al., 2008).  

In the recent investigation, in 

comparison to normal breast epithelial cells, 

the Cav-1 expression was downregulated in 

breast ductal carcinoma cells, there was a 

reciprocal link observed between Cav-1 and 

both EGFR and HER2 expression status (Ren 

et al., 2021; Park et al., 2005). This is 

consistent with the in vitro studies, which 

showed the roles of Cav-1's purposes as a 

negative regulator of cell signalling and a 

tumor suppressor in the growth of breast 

cancer (Ren et al., 2021; Park et al., 2005). 

Similar findings in other research revealed 

lower expression of caveolin-1 in human 

breast cancer cells and cells converted by 

oncogenes (Razani et al, 2001c; Sagara et al., 

2004; Koleske et al., 1995).  Further evidence 

supporting Cav-1's role as a tumor suppressor 

protein in breast cancer arises from the 

discovery that recombinant production of 

Cav-1 significantly reduced anchorage-

independent growth and suppressed tumor 

cell proliferation (Ren et al., 2021; 

Bernatchez et al., 2020; Chen et al., 2019; Lee 

et al., 1998; Engleman et al., 1997). 

Additionally, Cav-1 down-regulation is seen 

in different malignancies, including ovarian, 

lung, colon, and sarcomas (Racine et al., 
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1999; Bender et al., 2000; Weichen et al., 

2001a; Weichen et al., 2001b). A previous 

study illustrated that the Cav-1 

downregulation facilitates the phenotypical 

effects of EGF, internalization and 

transcriptional down-regulation of E-

cadherin, and enhanced transactivation by β-

catenin. It represents a unique mechanism 

explaining the effects of EGF during tumor 

growth (Lu et al., 2003). 

The previous investigation showed 

that the expression and discharge of the 

growth factors SDF-1, EGF, and FSP-1 

significantly increased when Cav-1 was 

downregulated in fibroblasts. Additionally, it 

increased TIGAR expression, which could 

promote cancer cell growth and inhibit cancer 

cell death (Shi et al., 2016). The prognosis of 

tumors is correlated with the low expression 

or deletion of Cav-1 expression in stromal 

fibroblasts (Witkiewicz et al., 2010). Cav-1 

depletion in breast cancer patients' stromal 

fibroblasts has been suggested to predict the 

disease's relapse, metastasis of lymph nodes, 

and tamoxifen opposition (Witkiewicz et al., 

2009; El-Gendi et al., 2012). Cav-1 loss in 

stromal fibroblasts in patients with 

ER/PR/HER2 ductal carcinoma or breast 

cancer has been used to predict a poor clinical 

outcome (Yeong et al., 2018; Witkiewicz et 

al., 2009b). Breast cancer prognosis is not 

linked with Cav-1 expression in malignant 

cells (Shan-Wei et al., 2012). As a result, 

stromal Cav1 depletion is a crucial indicator 

of a "lethal" cancer microenvironment (Shi et 

al., 2016). Lower levels of Cav-1 generate 

larger amounts of extracellular matrix 

proteins and myofibroblast markers in co-

cultured human breast cancer cells with 

fibroblasts, suggesting that Cav-1 

downregulation initiates fibroblast activation 

in carcinogenesis (Martinez-Outschoorn et 

al., 2010b). The previous outcomes showed 

that Cav-1 expression was downregulated in 

the cells transfected with Cav1 siRNA, 

proving that the Cav1 siRNA sequences had 

successfully stifled the expression level of the 

Cav1 gene (Shi et al., 2016). 

            The relationship between lower levels 

of Cav-1 in the co-culture and fibroblasts and 

cancer cells was investigated by looking at the 

expression of cancer-related markers in 

fibroblasts and breast cancer cells (Shi et al., 

2016). Downregulating Cav-1 and co-

cultivating breast cancer cells together 

enhanced SDF1 expression in fibroblasts. 

Moreover, Cav-1's ability to prevent tumor 

growth may be related to its ability to block 

the signaling pathways in which SDF1 is 

involved (Shi et al., 2016).  

 It was strongly corroborated by the 

brand-clinical and molecular results 

indicating that stimulated Stat3 directly binds 

to the Cav-1 promoter, inhibiting 

transcription (Chiu et al., 2011). On the other 

hand, Cav-1 controls Stat3 activation and the 

invasion of brain-metastatic cancer cells 

(Chiu et al., 2011). In the previous animal 

model, suppressing Stat3 activation prevented 

breast cancer cells from migrating into the 

brain and metastasizing there (Chiu et al., 

2011). Cell proliferation and invasion are two 

ways that Cav-1 works to limit 

transformation, cancer growth, and metastasis 

(Chen et al., 2019; Fridolfsson et al., 2014; 

Chiu et al., 2011). Cav-1 is a transcriptional 

regulator of cyclin D1 and an endogenous 

suppressor in the p42/44 mitogen-activated 

protein kinase cascade (Engelman et al., 

1998). The previous finding demonstrated 

that SOCS-1-induced elevation of Cav-1 

expression inhibited cancer growth both in 

vitro and in nude mice (Chiu et al., 2011). 

Additionally, increased Cav-1 

expression reduced the invasiveness of breast 

cancer while decreasing its expression aided 

in cell proliferation and breast cancer invasion 

(Chen et al., 2019; Fridolfsson et al., 2014; 

Chiu et al., 2011). Moreover, a recent study 

found that caveolin-1 overexpression 

prevented Stat3 activation, a crucial 

mechanism in the development and breast 

tumor metastasis (Geletu et al., 2019; Chiu et 

al., 2011). Therefore, caveolin-1 expression 

may have an impact on breast cancer brain 

metastases in a variety of mechanisms (Chiu 

et al., 2011).  

Cav-1 inhibits COX-2 expression in 

HEK293T, HT29(ATCC), DLD-1, and ZR75 

cells through a transcriptional mechanism that 
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is dependent on β-catenin, Tcf, and Lef 

(Rodriguez et al., 2009). Cav-1's ability to 

inhibit tumors has been associated with its 

ability to negatively regulate -catenin-

Tcf/Lef-dependent transcription (Quest et al., 

2008). A mechanism involving Cav-1-

mediated inhibition of -catenin-Tcf/Lef-

transcription adversely regulates the target 

genes survivin and cyclin D1 (Galbiati et al., 

2000; Torres et al., 2006). These changes 

have been linked to decreased cell 

proliferation and an induced susceptibility to 

apoptosis (Chen et al., 2019; Fridolfsson et 

al., 2014; Torres et al., 2006; Torres et al., 

2007). The previous findings present 

evidence that the mRNA and protein levels of 

COX-2 are decreased by ectopic expression 

of Cav-1 in breast (ZR75) and colon 

[HT29(ATCC) and DLD-1] cancer cells 

(Haertel-Wiesmann et al., 2000; Araki et al., 

2003). 

Furthermore, inhibition was observed 

in HEK293T cells. In addition, Cav-1 reduced 

reporter activity generally correlated with the 

stimulation of the β-catenin-Tcf/Lef pathway 

(TOP/FOP reporter), and particularly 

associated with the induction of the COX-2 

gene in cancer and HEK293T cells. These 

findings support the idea that β-catenin-

Tcf/Lef regulates COX-2 expression through 

transcription (Haertel-Wiesmann et al., 2000; 

Araki et al., 2003) and indicate that through 

this mechanism, Cav-1 suppresses the 

expression of COX-2 in a manner reminiscent 

of the survivin study (Torres et al., 2006). The 

simplest explanation for the previous 

observations is that decreased synthesis of 

PGE2 is associated with Cav-1-dependent 

downregulation of COX-2 transcription. 

When Cav-1 is expressed in response to other 

apoptotic triggers (Torres et al., 2006), the 

reduction in cell proliferation is prevented by 

ectopic survivin expression (Tapia et al., 

2006). 

Further research has demonstrated 

that PGE2 stimulates transcription mediated 

by β-catenin-Tcf/Lef in HEK293, DLD-1, 

and LS-174T cells (Fujino et al., 2002; 

Castellone et al., 2005; Shao et al., 2005). 

Consistent with these studies, PGE2 

supplementation prevented the loss of 

survivin caused by Cav-1 in all cell lines 

examined. Previous research showed that in 

both mock and Cav-1-expressing cells, β-

catenin moved from the cell membrane to the 

nucleus as a result of PGE2. PGE2-induced 

signalling events disrupt the Cav-1/β-catenin 

multiprotein complex at the cell surface, 

preventing β-catenin-Tcf/Lef-mediated 

transcription in the nucleus. It has been 

demonstrated that Cav-1-mediated down-

regulation of β-catenin-Tcf/Lef-dependent 

transcription and survivin expression in 

cancer cells require E-cadherin (Torres et al., 

2007). The absence of E-cadherin in 

metastatic HT29(US) cells prevented 

observing these events. Similarly, the 

previous study found that in HT29(US) cells, 

ectopic Cav-1 expression had no effect on 

COX-2 mRNA levels, and restoring E-

cadherin expression restored the regulation of 

COX-2 downstream of Cav-1. The previous 

findings on COX-2 support the idea that one 

of the most important steps in the formation 

of a cellular environment is the decrease of E-

cadherin expression during tumor growth that 

is favorable and in which Cav-1's capacity to 

exhibit characteristics linked to tumor 

suppression or metastasis inhibition may be 

severely compromised (Quest et al., 2008). 

Stromal Cav-1 deletion is a novel 

biomarker of a fatal tumor microenvironment 

in the cancer-associated fibroblast 

compartment (Mercier et al., 2008; 

Witkiewicz et al., 2009a, Witkiewicz et al., 

2009b; Witkiewicz et al., 2010; Witkiewicz et 

al., 2009c; Pavlides et al., 2010). The 

previous study demonstrated that stromal 

Cav-1 depletion results in a 4-fold increase in 

tumor volume and mass without any 

corresponding rise in tumor angiogenesis 

(Trimmer et al., 2011). This supports the prior 

theory that oxidative stress and autophagy in 

cancer-associated fibroblasts provide high-

energy nutrients that can be recycled and fed 

directly to cancer cells without the need for 

vascularization or blood vessels (Martinez-

Outschoorn et al., 2010d). The fact that 

oxidative stress in cancer-associated 

fibroblasts causes mitochondrial malfunction, 
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ROS generation, and the autophagic 

degradation of mitochondria in stromal 

fibroblasts is a significant finding of these 

investigations (Jiang et al., 2022a; Martinez-

Outschoorn et al., 2010a; Martinez-

Outschoorn et al., 2010b; Martinez-

Outschoorn et al., 2010c; Chiavarina et al., 

2010). The previous findings showed that the 

tumor-stimulating behavior of Cav-1 

defective fibroblasts could be drastically 

reversed by recombinant production of 

mitochondrially targeted SOD2 (Trimmer et 

al., 2011). By raising the amount of collagen 

VI and other extracellular matrix components 

in the tumor/stromal milieu, stromal Cav-1 

deficiency may encourage the growth of 

tumors (Trimmer et al., 2011). 

Further, the previous study examined 

breast cancer cell lines' apoptotic induction 

and migratory characteristics after Cav-1 

gene silencing (Deb et al., 2014). The MCF7 

and MDA-MB-231 cell lines with Cav-1 

silenced behave like untreated cell lines (Deb 

et al., 2014). Although the amount of cell 

migration after Cav-1 knockdown was 

identical to control levels, less apoptosis was 

induced than in cells treated with control 

siRNA (Deb et al., 2014). This information 

confirmed the hypothesis about a potential 

connection between changed Cav-1 

expression and the activation of apoptosis and 

altered migratory properties of breast cancer 

cell lines (Chen et al., 2019; Fridolfsson et al., 

2014; Deb et al., 2014). According to the 

previous theory, Cav-1 is essential for 

triggering apoptosis and preventing cell 

migration (Jiang et al., 2022b; Chen et al., 

2019; Fridolfsson et al., 2014; Deb et al., 

2014). When Cav-1 is downregulated, it 

promotes cancer cell growth and may also 

boost its survival rate by suppressing the 

apoptotic pathway (Deb et al., 2014). 

Therefore, Cav-1 inhibits cell migration and 

triggers apoptosis together (Chen et al., 2019; 

Fridolfsson et al., 2014; Deb et al., 2014). 

Loss of stromal Cav-1 expression 

significantly reduces development-free 

survival and serves as a powerful predictor of 

tumor recurrence (Witkiewicz et al., 2009c). 

Further debate and research are necessary, 

considering the previous findings that the 

Cav-1 decrease in the cancer stroma promotes 

the aggressiveness of breast carcinomas 

(Witkiewicz et al., 2009c). Cav-1 expression 

is required for RB tumor suppressor 

functional inhibition in vivo, which releases 

E2F from mammary stromal fibroblasts 

(Witkiewicz et al., 2009c). The stromal cell 

loss of Cav-1 permits the signaling of 

transforming growth factor to be activated 

(Razani et al., 2001b). It has been 

demonstrated that activated transforming 

growth factor-signaling in CAFs induces the 

production of growth-promoting proteins, 

including human growth factor, vascular 

endothelial growth factor, and interleukin-6 

(Cat et al., 2006). Therefore, Cav-1 

expression in breast cancer stromal cells may 

be decreased or prevented by mutational 

suppression of p53 in these cells (Witkiewicz 

et al., 2009c). The causes of Cav-1 being 

downregulated in breast tumor stroma are still 

a mystery (Witkiewicz et al., 2009c). 

However, prior research with human breast 

CAFs revealed that Cav-1 mRNA transcript 

levels activated by about 2.3 to 2.4-fold or 

remained unchanged (Witkiewicz et al., 

2009c). This suggests that Cav-1 protein 

expression is lost at a post-transcriptional or 

post-translational stage (Mercier et al., 2008). 

Genome-wide transcriptional profiling 

confirmed that Cav-1(-/-) mammary stromal 

fibroblasts up-regulate several genes linked to 

embryonic stem cells, suggesting that these 

cells may have greater cellular plasticity 

(Witkiewicz et al., 2009c). According to 

CD31 staining (Sotgia et al., 2008), the 

mammary stromal compartment in Cav-1(-/-) 

animals exhibited drastically enhanced 

vascularization and encouraged 

carcinogenesis in vivo, which is consistent 

with these observations (Williams et al., 

2006). Therefore, mutational suppression of 

p53 in breast cancer stromal cells may reduce 

or eliminate Cav-1 expression in these cells 

(Witkiewicz et al., 2009c). As a result, based 

on these mechanistic findings, the previous 

data propose that, in addition to the more 

conventional treatment regimens, individuals 

with breast cancer who do not have stromal 



Mohamed Hosney  et al. 170 

Cav-1 may benefit from anti-angiogenic 

treatment (bevacizumab [Avastin]) 

(Witkiewicz et al., 2009c). 

The previous study showed that Cav-

1 could be moved from the cytoplasm to the 

plasma membrane because of BRCA1 (Wang 

et al., 2008). The altered invasive and 

metastatic abilities of BRCA1(+/+) MEFs 

cells could be explained by Cav-1 distribution 

because these traits are considerably different 

from those of BRCA1(-/-) MEFs cells (Wang 

et al., 2008). The buildup of Cav-1 in plasma 

membranes may significantly aid the 

modulation of mammalian cells' capacity for 

invasion and metastasis (Wang et al., 2008). 

Cav-1 has been documented to be essential 

for the endocytosis of E-cadherin (Chang et 

al., 2018; Lu et al., 2003). Caveolin-1 can 

build up in plasma membranes, increasing E-

cadherin expression, decreasing β-catenin 

transcriptional stimulation, and lessening 

cancerous cells' invasiveness (Wang et al., 

2008). The previous findings have significant 

implications for metastases because 

invasiveness is one of the traits shared by 

metastatic cells (Wang et al., 2008). 

A previous study showed the presence 

of some mutations in the Cav-1 gene in 

invasive human breast carcinoma and oral 

squamous cell carcinomas (Hayashi et al. 

2001). Among the recorded mutations, the 

P132L mutation of Cav-1 has been shown to 

cause inactivation of Cav-1 by producing 

misfolded Cav-1 oligomers that remained 

inside the Golgi complex and perinuclear 

space not directed to the cell membrane Lee, 

2002). The current study revealed the absence 

of P132L target point mutation in all Cav-1 

downregulated breast cancer patients (90%). 

Consequently, the alteration in the expression 

of Cav-1 was not due to the P132L target 

point mutation, but other factors may 

contribute to this down-expression. In a 

previous study, it was demonstrated that the 

disorder of expression of Cav-1 was due to 

conjugated linoleic acid (CLA) that may 

influence cell signaling in the breast cancer 

cell line (MCF-7) (Huot et al. 2010). The 

previous findings showed that the caveolin-1 

gene was inactivated by aberrant promoter 

methylation in 7.3% of normal breast tissues 

and 25.5% of breast cancer tissues, indicating 

that the Cav-1 gene may be inactivated in 

precancerous lesions during the progression 

of breast cancer (Koike et al., 2010). 

The present results agreed with 

previous studies documenting the absence of 

sporadic P132L point mutation of Cav-1 in 

breast cancer patient tissues (Koike et al., 

2010; Patani et al., 2012). On the contrary, the 

present results contradicted Hayashi, who 

found a P132L mutation of Cav-1 in six of 

fifty-five breast cancer patients (Hayashi et 

al., 2001).  

Conclusion:  The present study found 

that Cav-1 protein was expressed in the 

plasma membrane and the cytoplasm of 5 

(10%) patients and downregulated in 45 

(90%) patients. To the best of our knowledge, 

this is the first study on Cav-1 expression in 

Egyptian breast cancer patients that 

documented the absence of P132L target 

point mutation in all Cav-1 downregulated 

Egyptian breast cancer patients (90%). 

Furthermore, the alteration in expression of 

Cav-1 in Egyptian breast cancer patient 

tissues is not due to the P132L target point 

mutation, but other factors may contribute to 

this down-expression. 
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