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              Rapid, appropriate, and reliable diagnosis is paramount for selecting a 

suitable therapeutic intervention for the clinical management of COVID-19. 

Several serological and molecular diagnostic methods are available, however, 

biosensor-based diagnosis has been employed in the diagnosis of viral diseases 

including COVID-19 due to its high specificity, sensitivity, expeditiousness, low 

cost, and capability to detect the analyte even at low concentrations, especially 

during the initial stage of infection and pathogenesis. Due to the high 

conductivity, and thermal and mechanical stability of CNT, it is considered a 

potential candidate for biosensor development, for instance, CNT-FET-based 

biosensors. However, the designing and simulating a high-performance, low-

power, and miniaturized CNT-FET nanoelectronic device suitable for diagnostic 

applications, especially, point-of-care testing (POCT) is crucial for rapid and 

appropriate diagnosis of COVID-19 and other related viral diseases. Taking the 

leverage of the advancement of artificial intelligence, attempts have been made 

to boost the CNT-FET technology and the development of efficient CNT-FET-

based biosensor models with accurate performance. This article explains the 

fundamental concept of the biosensor-based diagnosis of the COVID-19 disease, 

application of the artificial intelligence to increase the accuracy of the high-

performance model, and the approach to standardize the design variables and 

performance parameters of the nanoelectronic circuit suitable for diagnosis. 

Moreover, the article highlights the current challenges and meaningful insights 

into their application in viral disease diagnosis beyond COVID-19 and the future 

perspective of the CNT-FET-based sensors in viral disease diagnosis.  

INTRODUCTION 

            SARS-CoV-2, a lethal virus causing the coronavirus-disease-2019 (COVID-19) 

pandemic(Dong et al., 2020; Spychalski et al., 2020), resulted in high global mortality and 

morbidity (Almalki et al. 2023; Dong et al. 2020). The evidence suggests that SARS-CoV-2 

causes injury beyond the pulmonary clinical manifestations, for instance, thrombotic 

complications, acute coronary syndromes, renal damages, and hepatocellular injuries (Gupta 

et al., 2020). Moreover, regional outbreaks caused by emerging variants or subvariants pose a 

remarkable challenge for early diagnosis, appropriate therapy selection, and effective 

management of pulmonary and extra-pulmonary sequelae of COVID-19 (Izhari et al., 2024).  

http://www.eajbsc.journals.ekb.eg/
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                The primary step in the 

management of COVID-19 is accurate, 

reliable, and speedy pathogen detection (R 

Liu et al., 2020). Genome (RNA), genome-

encoded protein components, and 

nucleocapsid of the SARS-CoV-2 are the 

major and reliable molecular targets for the 

diagnosis of the disease (Yong et al., 2020), 

however, the most precise diagnostic method 

is genome detection and/or viral load 

determination by real-time reverse-

transcription–polymerase-chain-reaction 

(RT–PCR) (Kevadiya et al., 2021; H Wang et 

al. 2020). Additionally, culture-based-test (C-

G Huang et al. 2020), and immunoassay 

(Antigen and/or antibody detection) using 

several techniques including lateral-flow 

rapid assay have also been employed for the 

diagnosis of COVID-19 (C Li et al., 2020; 

Mathuria et al., 2020). These diagnostic 

methods are rigorous, however, they need 

sophisticated diagnostic laboratories with 

costly reagents/enzymes and consume 

time(Islam & Iqbal 2020; Jefferson et al., 

2021) which highlights the necessity of cost-

effective, simple, highly sensitive, and 

accurate biosensors/ nano-biosensors/ 

immune-biosensors for rapid detection of the 

SARS-CoV-2 /components of the SARS-

CoV-2 (Patel et al., 2022; Samson et al., 

2020).  

Recently, Biosensors-assisted 

diagnosis of the viral infection has gained 

remarkable momentum post-COVID-19 

pandemic(Mukherjee et al., 2022; Saylan et 

al., 2019; Trinh et al., 2023). Biosensors have 

been leveraged for the delineation of the 

potential biomarkers in the specimens of 

clinical significance on account of their high 

sensitivity and reliability (Banakar et al., 

2022; Cesewski & Johnson 2020) which is 

paramount for the diagnosis of SARS-CoV-2 

infection (Abid et al., 2021). Biosensors-

based detection of pathogens/molecular 

components of pathogens is advantageous 

over traditional culture-based or molecular 

diagnosis (Kaya et al., 2021; Shokeen et al., 

2022; Vidic & Manzano 2021). Successful 

applications of the electrochemical 

biosensors in viral disease (Hepatitis C virus, 

influenza A virus, avian influenza virus, and 

Middle East-Respiratory-syndrome 

coronavirus) diagnosis have been reported 

(Antiochia 2020; Sayhi et al. 2018; 

Timurdogan et al., 2011; Xu et al., 2007). 

Biosensing devices based on the field-effect-

transistor (FET) have been reported to be 

highly sensitive and instantaneous in 

measuring the biomarkers using a very small 

amount of clinical specimens making these 

devices highly suitable for point-of-care 

testing (POCT) and rapid management of the 

disease (Alnaji et al. 2023; Janissen et al., 

2017; Nehra & Singh 2015). In the recent 

past, a CNT-FET-based miniature device for 

the detection of antibodies (anti-SARS-CoV-

2 spike antigen) has been reported which 

exhibited a very narrow determination range 

of 5.5 femtogram/ml to 5.5 picogram/ml of 

the sample (Shao et al., 2021). Additionally, 

spike (S1) antigen detection CNT-FET-based 

nano-electro-immuno-biosensor with 

enormous sensitivity and selectivity has been 

reported (Mazin A. Zamzami et al., 2022). 

With the excellent features of CNT, fast-

sensing, cost-effective, and miniaturized 

portable devices (nano-size) can be devised 

which could pave the way for large-scale, 

rapid, onsite diagnosis of SARS-CoV-2 

infection using CNT-FET-based nano-

immuno-sensors even from patients saliva 

(Bertacchini et al., 2020). Efficient circuit 

design and circuit-parameter optimization are 

the key components of the nano-biosensor 

developmental process and to achieve the 

desired performance of the biosensing circuit, 

automation in circuit design is an important 

factor (Fayazi et al., 2021). Computer-aided 

design (CAD) tools have been meeting the 

demand of automating circuit optimization 

for considerable performance (Back 1996). In 

the last decades, in many studies, the leverage 

of Artificial Intelligence (AI) has been taken 

for analog circuit design leading to the 

development of high-performance nano-bio-

sensors for biomedical applications (Fayazi et 

al., 2021). Therefore, this study aimed to 

summarize the CNT-FET-nano-biosensors, 
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CNT-FET-nano-biosensors-based diagnosis 

of SARS-CoV-2 infection, and potential 

impact of AI on the development of CNT-

FET-nano-biosensors along with the future 

direction of the rapid diagnosis of the SARS-

CoV-2 infections. 

COVID-19 Diagnostic Approaches: 

             Several technical approaches have 

been undertaken to diagnose COVID-19 

appropriately to curb the large-scale 

transmission of SARS-CoV-2 and effective 

clinical management of the disease in a time-

bound fashion.  

Genome-Based Diagnosis: 

              PCR-based diagnostic assays with 

high specificity and sensitivity are considered 

the gold-standard molecular diagnostic 

methods in viral pathogen genome detection 

(Hernández‐Huerta et al. 2021). Additionally, 

clustered regularly interspaced short 

palindromic repeats (CRISPR)-based 

molecular diagnostic assays (Rahimi et al., 

2021) and several genome sequencing 

techniques have been the most reliable tools 

in the diagnosis of COVID-19 (Falzone et al., 

2021). However, the necessity of 

sophisticated laboratories (Maurer 2011), 

trained specialists, the high purity level of 

clinical specimens, expensive reagents, and 

prolonged assay reaction time highlight the 

drawbacks of these diagnostic methods (Afzal 

2020; Corman et al., 2020). To address the 

time-consuming process of genome detection, 

recently, isothermal nucleic acid 

amplification-based assays such as 

recombinase-polymerase-amplification 

(RPA), reverse-transcription-RPA (RT-RPA) 

(Liu et al., 2021), loop-mediated-isothermal-

amplification (LAMP), reverse-transcription 

LAMP (RT-LAMP) (W E Huang et al. 2020), 

helicase-dependent amplification (HDA), and 

RT-HAD (Shanmugakani & Wu 2022) have 

been employed for COVID-19 rapid 

molecular diagnosis (Fig. 1). 

Serodiagnosis:   

Moreover, reliable, rapid, 

inexpensive, and onsite diagnostic 

alternatives for large-scale surveillance to 

curb the transmission of SARS-CoV-2 and to 

minimize its clinical impacts are required 

urgently (Larremore et al., 2021). Detection 

of anti- SARS- CoV-2- antibodies 

(immunoglobulin G and M: IgG and IgM) (W 

Liu et al. 2020) and SARS-CoV-2-antigens 

(Ernst et al., 2021) in blood, plasma, tissue 

fluids, and other tissue samples using 

immunological (Zhang et al. 2020), 

immunochromatographic (Z Li et al., 2020), 

and dried-blood-spot (DBS) (Amendola et al., 

2021) methods is carried out by researchers to 

meet the desired diagnostic requirements 

(Fig. 1). Nonetheless, SARS-CoV-2 antigen 

exhibits identity with antigens of other SARS-

CoV viruses which highlights the false 

positive results (Zhang et al., 2020). 

Furthermore, anti-SARS-CoV-2 exhibits 

cross-reactivity with SARS-CoV antigen 

which is a major challenge for the 

development of the serological tests for the 

diagnosis of COVID-19 (Lv et al., 2020). In 

addition, an immunochromatography-based 

test does not confirm the presence of the virus 

and determines only recently infected 

individuals which highlights the limitation of 

the method. Anti-SARS-CoV-2 antibodies’ 

cross-reactivity flags the specificity and 

sensitivity issue of the technique (Liu & 

Rusling 2021). Therefore, to address this 

issue these serological techniques are 

frequently used in tandem with molecular 

methods to achieve the confirmatory 

diagnostic goals. 

Radiodiagnosis: 

              Furthermore, the role of 

radiodiagnosis (cross-sectional image-based) 

by computer-tomography (CT) (Lee et al., 

2020) based on identifying abnormal 

radiological features (unifocal/multi-foci 

plaque-consolidation and/or ground glass 

opacity) (Chung et al., 2020) is crucial in the 

diagnosis of infection and the clinical 

manifestations of the disease (X Li et al., 

2020) (Fig. 1). Nonetheless, studies showed 

that chest CT-scan does not appropriately 

diagnose at the initial stage (Bernheim et al., 

2020), also RT-PCR-positive individuals 

exhibited normal CT at the early stage of the 

disease (Ai et al., 2020) which explains the 

probability of missing a few lesions due to 

low resolution or SARS-CoV-2 might have 
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targeted other organs than the lungs. 

However, CT-based diagnosis needs a 

professional radiologist, and expensive 

equipment and is often used in conjunction 

with RT-PCR for confirmatory diagnosis 

which emphasizes its limitation as a 

diagnostic tool alone.  

Carbon-Nanotube (CNT) and Sensor-

Based Diagnosis:  

                Nacked-eye, non-invasive, 

sensitive, cost-effective, convenient, 

biocompatible, and suitable for POCT 

diagnostic techniques are urgently required to 

expedite the diagnostic processes for better 

management of infectious diseases which led 

to the development of biosensors for 

biomarker detection. Also, the remarkable 

application of electronics in the determination 

of biomolecular markers for the diagnosis of 

various infections has taken center stage due 

to the demand for surveillance and early 

diagnosis with high sensitivity and specificity, 

recently (Behera et al., 2020). 

Electrochemical immuno-sensors/optical 

biosensors/electrical biosensors, very-large-

scale integration (VLSI) chip-based-

biosensors, and FET/CNTFET-based nano-

biosensors have been used to improve 

diagnosis (Eissa & Zourob 2020; Ghafar-

Zadeh 2015; Ke et al., 2020; Kim et al., 2021; 

Ovais et al., 2022; C Wang et al., 2020) (Fig. 

1).  

 

 
Fig. 1. Illustration of the COVID-19 diagnostic techniques and methods. RT-PCR = reverse-

transcription-polymerase-chain-reaction; rRT-PCR = real-time-RT-PCR; RPA = recombinase-

polymerase-amplification; NGS = next-generation-sequencing; CRISPR = clustered regularly 

interspaced short palindromic repeats; ELISA = enzyme-linked-immunosorbent-assay; DBS = 

dried-blood spot; CT = computer-tomography; LFIA = lateral flow immunoassay; FET = field-

effect transistor; SESR = surface-enhanced Raman resonance; RT-MCDA = reverse-

transcription multiple cross displacement amplification; LSPR = localized-surface plasmon-

resonance; CNT = carbon-nanotube; LAMP = loop-mediated-isothermal amplification; RT= 

reverse-transcription; HAD = helicase-dependent amplification. 
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 An electronic digital system is based 

on logic circuit design and simulation for 

optimizing the key performance parameters. 

CNTs are identified to be an efficient building 

block material that renders the development 

of ultra-sensitive bio-sensing devices (Zhou 

et al., 2019). CNTs have imprinting features 

for rendering supreme quality circuit 

manufacturing for biosensor development 

due to their metallic properties, high carrier 

mobility, and ballistic conduction. 

(Mohammaden et al., 2022). CNTs’ behavior 

is dependent on the atomic arrangement along 

the nanotube termed a chiral vector which is 

described by indices (m, n). The CNT’s 

circumference is expressed as a chirality 

vector (Ch= na1+ma2). Thus, CNT-based 

nanoelectronic circuits could potentially 

impact the biosensing of molecular 

biomarkers of diagnostic significance. 

Moreover, device simulation and device 

characteristics analysis using several 

simulators are crucial for improving the 

circuit performance. furthermore, the 

presence of CNTs as a channel in CNTFETs 

makes ultra-high-speed CNTFET 

nanoelectronic circuits consume low power 

making them suitable for biomedical 

applications (Mehrabani et al., 2017). The 

fundamental concept of the CNT-FET 

biosensing of the analytes is illustrated in 

Figure 2 (Yang et al., 2015). 

  

 
Fig. 2. Principal components of the CNT-based biosensor for the COVID-19 disease diagnosis. 

LCD = Liquid crystal display, SPU = Signal processing unit, SCU = Signal conditioning unit, 

RC = Resistor-capacitor, CNT = carbon nanotube, SWCNT = single-walled CNT, DWCNT = 

double-walled CNT, and MWCNT = multi-walled CNT. 

 

Fabrication of CNTFET-nano-

immuno-biosensor was carried out to use for 

the convenient and speedy diagnosis of 

SARS-CoV-2 infection with high specificity 

as the sensor differentiated the SARS-CoV-1 

antigens from spike antigens of other SARS- 

CoV (Ovais et al. 2022). One of the most 

fascinating uses of tungsten-disulfide-

MWCNT (WS2-MWCNTs) in conjunction 

with hybridization reaction for ultra-sensitive 

genomic detection with ultra-sensitivity was 

spectacular which led to the development of a 
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diagnostic tool (Liu et al. 2016). An 

electrochemical biosensor (SWCNTs-based 

nanocomposite) with ultra-sensitivity was 

developed to identify nucleic acid target 

sequences in clinical samples for the 

diagnosis of infections (Chen et al., 2016). 

Such efficient biosensors could also be used 

to diagnose other human coronaviruses such 

as Middle East Respiratory Syndrome 

(MERS) (Antiochia 2020). However, there 

are various potential challenges in the 

development of the CNT technology which 

include controlled synthesis, placement of 

CNTs, and poor interfacial metal-CNT 

interaction (Daneshvar et al., 2021). Several 

developed biosensors for laboratory diagnosis 

of SARS-CoV-2 are summarized in Table 1.  

 

Table 1. Biosensors employed in diagnosis of SARS-CoV-2 infections 
Biosensors Biosensor-design Molecular 

targets 

(biomarkers) 

Specific features References 

CNT-FET-based 

electrochemical 

biosensor 

CNT printed 

Si/SiO2-surface was 

developed as a biosensor. 

Non-covalent 

immobilization of Anti-

SARS-CoV-2 S1 on the 

CNT surface (between the 

S-D using PBASE linker) 

SARS-CoV-

2-S1-sub-unit 

antigens 

High sensitivity 

(LOD = 

4.12 femtogram/milliliter) 

(Mazin A 

Zamzami et 

al. 2022) 

EDL-FET-based-

biosensor 

The sensing electrode is 

coated with anti-SARS-

CoV-2 nucleoprotein-

antigen and the results are 

displayed on a smartphone 

through Bluetooth device 

SARS-CoV-2 

nucleoprotein- 

antigen 

Sensitivity 

(LODs = 

0.34 nanogram/mL) 

(P-H Chen 

et al. 2022) 

FET-biosensor Graphene sheet of FET-

coated with anti-SARS-

CoV-2-spike-antibody 

 

Spike-protein 

antigen 

High sensitivity (LOD = 

2.42 × 102 

copies/milliliter) 

(Seo et al. 

2020) 

RT-MCDA-

based biosensor 

Two primer sets: ORF-

1a/b and SARS-CoV-2 

nucleoprotein genes.  

ORF-1a/b and 

nucleoprotein 

gene 

sequences 

LOD =  NA, total 

reaction completion time 

= I hours 

(S Li et al. 

2020) 

 

DF-LSPRPB 

Two-dimensional-AuNIs-

DNA receptors 

(complimentary)/detection 

based on nucleic acid 

hybridization 

Any selected 

SARS-CoV-2 

marker 

sequence 

High sensitivity 

(LOD = 0.22 pM) 

(Qiu et al. 

2020) 

FTO/AuNPs 

immunobiosensor 

FTO-electrodes/AuNPs 

complex conjugated with 

anti-SARS-CoV-2 spike-

S1-subunit. 

SARS-CoV-2 

spike S1-sub-

unit antigen 

High sensitivity (LOD = 

0.63 fMP 

(Roberts et 

al. 2021) 

LFIA-biosensor Phage-display technology 

to generate fusion 

antibodies to trap NP-

antigens 

SARS-CoV-2 

nucleoprotein- 

antigen 

High sensitivity 

(LOD = 10 

copies/microliter) 

(Kim et al. 

2021) 

LFIA-nano-

biosensor 

SARS-CoV-2-

nucleoprotein-antigen 

coupled with selenium 

nanoparticle 

Anti-SARS-

CoV-2 NP 

antigen (IgG 

and IgM) 

anti-NP IgG-LOD  20 and 

anti-NP IgM-LOD  60 

ng/mL 

(C Chen et 

al. 2022) 

CNT = carbon nanotube, FET =  field-effect transistor, DFLAPRB = dual-functional-LSPR-biosensor; PTT = combining the 

plasmonic photothermal (PPT); LSPR  = localized surface plasmon resonance, AuNIs = gold-nanoislands, LOD = Limit of 

detection, pM = picomole, LFIA = Lateral-flow immunoassay,  PBASE = 1-pyrenebutanoic acid succinimidyl ester, FTO = 

fluorine-doped tin oxide, EDL = electrical double layer, RT = reverse transcription, MCDA = multiple cross-displacement 

amplification. 

https://www.sciencedirect.com/topics/engineering/electrical-double-layer
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Impact of Artificial Intelligence (AI) in 

CNT-FET-Based Circuit Design: 

              Accuracy in electronic circuit design 

is paramount. AI advancements offer huge 

potential in circuit design and optimization. 

Manual calculation of the significant design 

parameters of the nanoelectronic circuit poses 

a greater challenge, and inefficiency due to 

the model complexity, especially during the 

downscaling process (Lyu et al., 2018). 

Furthermore, following the design, the 

simulation studies are also a lengthy, time-

consuming process, and error-prone. 

Therefore, automation in design and 

simulation is highly needed to meet the 

growing market demands for low-power and 

miniaturized integrated circuits (ICs) for 

various applications (Zhang et al., 2019). In 

the recent past, many studies have attempted 

to leverage the potential of AI in electronic 

circuit design. Using AI automated circuit-

sizing optimization and accuracy of the 

performance models can be successfully 

achieved. AI-based design tools and 

algorithms not only automate the design 

process but also offer the design of an 

efficient circuit by analyzing the avalanche of 

complex design and performance-related data 

to predict the suitable combinations of the 

circuit components with high efficiency 

resulting in the development of low-power 

consuming, least signal interference and 

reduced heat generation (Li et al. 2021). 

Various aspects of the impact of AI on 

electronic circuit design are illustrated in 

Figure 3.  

 

 
Fig. 3. Multifaceted impact of artificial intelligence on electronic circuit design. PCB = 

physical printed circuit board, DRC = Design rule checking, and AI = artificial intelligence. 

 

AI or its sub-domain machine learning 

(ML) has been recognized as a potential 

analytical tool to address circuit design-

related issues with its potentialities to make 

automated calculations and predictions of 

design parameters by deeply mining complex 

data (Zhao et al., 2020). AI operation is based 

on training with pre-labeled data to provide 

appropriate predictions on fresh data input 

which plays a crucial role in expediting the 

experimental and computational analysis 

(Floreano & Mattiussi 2008). In addition, AI 

in combination with other methods could be 

used to figure out the yield estimation and to 

generate high-order models (Lin et al., 2018). 

ML is advantageous over traditional 

qualitative and quantitative algorithms 

because it can analyze high-dimensional 

datasets efficiently and find significant 

connections and patterns among the various 
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parameters (Volk et al. 2020). The appropriate 

applications of random forests, decision trees, 

support vector machines, and artificial neural 

networks ML algorithms have been reported 

in recently published scientific reports (Bhatti 

et al., 2023; Charbuty & Abdulazeez 2021; 

Ding et al., 2011) that could play a crucial role 

in nanoelectronic circuit design (Rosa et al., 

2020). The conventional inverse approach is 

compared with artificial intelligence-based, 

especially, the neural networks-based direct 

approach of electronic circuit design in Figure 

4 (Rosa et al., 2020).  

 

 
Fig. 4. Impact of AI on electronic circuit design: (a)-design variable to performance inverse 

approach (inverse approach), and (b)-electronic circuit performance to design variables using 

AI-artificial neural networks.  

 

Conclusion and Future Outlook:  

The burden of the disease caused by 

emerging viruses, in the recent past, has 

drastically increased. Error-prone viral 

replication generates a vast range of variants, 

subvariants, and covariants of a wild-type 

virus, especially RNA viruses, for instance, 

SARS-CoV-2. Therefore, molecular 

diagnostic procedures based on detecting 

some conserved genomic elements of the 

virus sometimes give inappropriate 

diagnoses. In addition, direct electron 

microscopy and viral culture-based diagnosis 

are time-consuming and costly. Rapid 

immune-chromatographic tests and 

immunoassays based on antigen-antibody 

interaction are comparatively less time-

consuming, however, the specificity and 

sensitivity are not remarkably high. 

Therefore, the development of biosensors 

with high sensitivity for diagnosing viral 

disease has recently gained the attention of 

researchers globally. Several classes of 

biosensors have been used in the successful 

diagnosis of COVID-19 disease leading to the 

increasing demand for high-performance 

biosensors.  Using nanomaterial, for instance, 

CNTs to enhance the performance level of 

biosensing devices has been paramount. 

CNT-based biosensors, especially, CNT-

based FETS offer ultra-sensitivity and 

reduced-noise analyte detection systems 

which facilitate the biomolecules even in a 

narrow concentration range. Such low-

concentration (typically analyte is in low 

concentration at an early stage of the 
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infection) detection systems facilitate the 

early diagnosis of the viral infection. CNT-

FET-based biosensors exhibited remarkable 

diagnostic potential in diagnosing COVID-19 

disease which underlines the commercial 

interest in CNT-FET-based biosensors 

development. Therefore, the design and 

simulation of the CNT-FET with high 

performance is crucial to meet the diagnostic 

necessities. Taking the leverage of the 

advancement of artificial intelligence to 

analyze complex simulation data, and predict 

appropriate design variables and vital 

performance parameters suitable for the 

diagnostic application. Taking advantage of 

the combination of the CNT-FET and 

artificial intelligence, the diagnostic 

challenges for the COVID-19 diagnosis could 

be minimized, and a promising, accurate, 

speedy, and cost-effective diagnostic solution 

could be achieved. However, CNT production 

and its solubility are some of the major 

challenges.  
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