Application and Theoretical Study: New Barbiturate Derivatives as Corrosion Inhibitors

Kadhim A. Ali1, Mohanad M. Kareem2 and Hamida I. Salman1
1Department of Chemistry, College of Education for Pure Sciences, University of Karbala, Karbala, Iraq.
2Department of Chemistry, College of Science, University of Babylon, P.O. Box 51002, Hilla, Iraq.

*E-mail: Mustafa97162@gmail.com ; Sci.mohanad.mousa@uobabylon.edu.iq ; Hamida.idan@uokerbala.edu.iq

INTRODUCTION

One of the main problems in many manufacturing sectors is metal corrosion, which causes enormous economic losses (Salghi et al., 2017). Usage of corrosion inhibitors is one of the best ways to prevent corrosion on metal surfaces in situations with acidic chemicals is to use inhibitors (Lagrenee et al., 2002). Due to its affordability, usefulness and availability in abundance, mild steel is used extensively across a variety of industries. Acid solutions are typically employed in a variety of industrial operations to remove unwanted rust, scale, etc. As a result, solutions containing corrosive ions are frequently exposed to metallic surfaces. A key issue with these applications is corrosion. Corrosion causes significant losses in the industrial sectors, and the greatest defense against it is the protection procedure. Corrosion inhibitor is regarded as the greatest kind of protection in the business among the different techniques utilized to shield the metal surface from deterioration and destruction (Rani and Basu 2012),(Chigondo and Chigondo 2016).
The fact that organic substances have some impacted elements, such as electronegativity and conjugation, makes them the most effective inhibitors. The adsorption on the surface of the metal is influenced by the physical and chemical characteristics of the molecule, such as size, donor-acceptor atoms, orbital p character, electronic structure, and types of functional groups (Obot and Obi-Egbedi 2008). Organic compounds that contain heterocyclic atoms in their structure, such as (sulfur, nitrogen, phosphorus, and oxygen), whether they are in the ring or in the side chain, or compounds that contain electrons, or effective polar groups (NO₂, -SH, -NH₂, -OH) which increases its adsorption on the surface of the metal increases the efficiency of its inhibition (Dutta et al., 2017). By adsorbing the inhibitor particles onto the metal's surface, an insulating defense barrier is formed between the metal's surface and the acidic solution, preventing or reducing corrosion (Abd-Alkareem, Salman, and Hassan 2023), and the efficiency of organic inhibitors depends on the chemical composition, the size of the aromatic organic inhibitor, the carbon chain binding chain, the nature and charge of the metal surface of the type of adsorption, the ability of the inhibitor to bind The surface of the metal, the type and number of atoms or groups attached to the molecule (skama and pi), the active groups the inhibitor contains, the type of electrolyte solution (El Mouden et al., 2015).

Organic substances having Schiff's bases an amine in which the nitrogen atom is bonded to an aryl or an alkyl group but not a hydrogen atom. Its general equation is R₁R₂C = N-R₃. Amine is stabilized via the organic interaction with the nitrogen atom possible inhibition (Alnasrawi et al., 2020), (El-Barasi et al., 2023). The main benefit of Schiff Rules is that they are inexpensive starting materials and can be deployed effortlessly. Effective Chef Guidelines Steel corrosion inhibitors for the presence of imine (-C = N-) and electrophilic groups in acidic medium. The molecule (Abdel-Gaber et al., 2009), (Gupta et al., 2016). Contains oxygen, nitrogen, and/or sulfur. Barbiturates have a "balance" of lipophilic functionality (5,5'-substituents) and hydrophilic activity (2,4,6-pyrimidinetrione ring structure). Barbiturates' general hydrophilic (polar) or lipophilic (non-polar) nature depends on: - The total size and structure of the two substituents at the 5-position, which is dependent on the number of N-substituents and the pKa of the acidic proton(s) in the pyrimidinetrione ring, in 5 position. Barbiturates, such as phenobarbital, have long been used as anxiolytics and hypnotics and reduce REM sleep time. Today they have been largely replaced by benzodiazepines for these purposes because the latter are less toxic in drug overdose (Sunkara et al., 2004), (Albert Jones 2018), (Whitlock* 1975). Barbiturates can be used as a biological antibacterial. Planar molecules tend to absorb the metal surface better than those having less planar structure, which is influenced by the geometry of molecule structure. It has been discovered that quantum calculations are an effective tool for illuminating the mechanism of corrosion inhibition (Johns 1975), (Liu et al., 2011).

Environmental chemicals with little to no environmental influence are preferred by corrosion prevention systems. According to the available evidence, organic inhibitors work by adhering to metal surfaces and forming protective films. According to the following procedure organic inhibitor molecules replace water molecules at the metal/solution interface to cause the adsorption of those molecules (Chetouani et al., 2003). Carbon steel that is used in petroleum pipelines and building and bridge structures has good mechanical properties however it undergoes corrosion and it needs methods of corrosion protection. (Oûm 1970). In several branches of chemistry, the quantitative structure-activity relationship (QSAR) has attracted a great deal of attention. In the subject of corrosion, the design and development of organic corrosion inhibitors may benefit from the use of density functional
Application and Theoretical Study: New Barbiturate Derivatives as Corrosion Inhibitors

725

Preparation of Organic Inhibitors:

Synthesis of 5-(4-nitrobenzylidene)-2-thioxodiarylpuridine-4,6(1H,5H)-dione (K1): Thiobarbituric acid (0.013 mol, 2g), 4-nitrobenzaldehyde (0.013 mol, 2.14 g) and sodium acetate (0.013 mol, 1.3 g) was mixed in the mortar. The mixture was finely grounded at room temperature and then the product was dissolved in 10 ml of water. The product was washed with water after that it was dried which afforded a solid yellow product with 71% yield, m.p. decomp. >325 °C. The reaction was monitored by TLC (acetone :chloroform:: 3:2 Rf =0.74). IR (KBr, Vmax , cm-1): 3280 (NH), 850 (C=C alkene bend), 738 (C=C aryl), 1535,1344 (NO2), 1405 (C=N), 1604 (C=C alkene), 1620 (C=C arom.), 1344 (CNH) 1050 (Ar-O-Ar).1H NMR (ppm): δ 10.56 (2H, NH), 9.79 (H, H-C=O), 8.24 (H, H-C=C), 8.45 (2H, Ar-H), 7.98 (6H, Ar-H). 13C NMR (ppm): δ 191.2(C, C-C=O), 165.80 (C, S=C-C), 162.79 (2C, C=O), 156.34 (C, =C-O), 132.56 (2C, C=Ar), 130.49 (C, =C-C=O), 127.80 -116.72 (6C, C=Ar). (found) % for C18H12N2O5: C, 61.36; H,3.43 ; N, 7.95; O, 18.16 ; S, 9.11.

Synthesis of 5-(4-(4-(4-chlorophenyl imino)methyl) phenoxy) benzylidene)-2-thioxo dihydropyrimidine-4,6(1H,5H)-dione (K2D1): A mixture compound K2 (0.0042 mol, 2 g) in 10ml acetic acid and added p-chloroaniline (0.0042, 0.9g). and three drops of icy acetic acid were heated at 80 °C with reflex and stirred for 2 h then it remained cool until a precipitate formed after that it was recrystallized with ethanol was weighed with filter paper. The solid brown colour product (K2D1) in 62% yield and m.p.>300 °C. Shown this in diagram 1, was obtained the reaction was monitored by TLC (acetone: chloroform 3:2, Rf = 0.53). 3383 (N-N), 2940 (C=H), 2800 (C=H), 1675 (C=O amide), 1573 (C=N), 1440 (C=S), 1344 (CNH) 1H NMR (ppm): δ 13.53 (H, NH), 10.8 (H, NH), 8.80 (H, H-C=N), 8.46 (H, C=CH-), 8.27 (2H, Ar-H).8.10-7.40 (4H, Ar-H) 7.29-6.55 (6H, Ar-H).13C NMR (ppm): δ 170.28 (C, S=C-N) 163.2 (2C, C=O) 150.5 (C, C=N) 139.43 (C, =C-O) 134.7 (C, =C-N) 130.6 (C, C-Cl), 128.8 (C, =C-CH) 125.9 (2C, C=Ar) 117.3 (4C, C=Ar). (found) % for C24H16C4N4S2: C, 62.41; H, 3.49; Cl, 7.57; N,9.10; O, 10.39; S, 6.94.

To explain the mechanism of inhibiting the effect of heterocyclic organic compounds theoretically, the Density Functional Theory (DFT) method(Khaled 2008),(Awad 2004),(Hegazy et al., 2013). was used. Quantum Chemical methods have proved very useful in determining molecular structures and explaining electronic structures and reactivity. They have been proven to be a very powerful tool for studying corrosion inhibition mechanisms(Fang and Li 2002).
Diagram -1- synthesis of 5-((4-chlorophenyl) imino)methyl) phenoxy) benzylidene)-2-thioxo dihydropyrimidine-4,6(1H,5H)-dione.

Preparation of Carbon Steel Specimens:

The samples were made by cutting a carbon steel column into cylinders with a diameter of (2.5 cm) and a height of (3 mm). The samples’ chemical makeup was identified. Aside from Fe, test samples contained 0.179% C, 0.141% Si, 0.652% Mn, 0.0082% P, and 0.028% S. Other test samples included 0.0545% Cr, 0.0039% Mo, 0.0478% Ni, 0.0105% Al, and 0.224% Cu. Then, mechanical polishing and smoothing operations were carried out utilizing fine polishing equipment and sanding boards with varied grits (80-2500). Each specimen should be washed with 100% ethanol and stored in the dryer until use after polishing the surface and a paste that resembles glass (Abdulridha et al., 2020).

Prepare the Solution:

The solution to be tested is prepared with 1M of H2SO4 by diluting it with 98% sulfuric acid solution with distilled water. Then we prepared a solution of the compound used for inhibition with different concentrations starting (0.005, 0.02, 0., 0.) by dissolving in 1 ml of DMSO and weighing certain quantities to prepare the inhibitors, then they are dissolved in the acid solution and then supplemented with 1000 water.

Measurements of the Potentiodynamic Polarization:

The polarization of the electric potential is calculated through a three-electrode electrochemical cell made of Pyrex glass attached to a potential static. The working electrode in which the alloy is placed, the calomel electrode (SCE Ag / AgCl) measures the saturator, and the auxiliary electrode is composed of platinum. The three electrodes are immersed in a container containing the prepared solution, and they are tested for a period of 30m to obtain open circuit measurements (OCP) in their steady state in a voltage range of (-972 - 50 mv) In it, the electrode stops the counter, after which it is turned on to calculate the electrical measurements of both the Ecorr and Icorr from Through the linear polarization Tafel method of the Bc, Ba curves. The inhibition efficiency[E%] is calculated through the following equation (1) (Bedair et al., 2017).

\[
E\% = \frac{I_{corr} - I_{inh}}{I_{corr}} \times 100 \quad \ldots \quad (1)
\]

E% is the inhibition efficiency ratio, Icorr is the corrosion current density without the inhibitor and Iinh is the current density with the inhibitor.

Quantum Chemical Calculations (DFT):

In order to calculate the most crucial parameters, such as EHOMO, ELUMO, energy gap (E), and parameters that influence the interaction between the prepared inhibitor molecules and the exterior of the material or alloy to be tested on, quantum chemical calculations using density functional theory have been recorded in B3LYP/6-31++G(d, p) level with Gaussian 09W software, which has been linked to GaussView5.0. Since our investigations are conducted in conditions that contain acidity, parameters have been hypothetically recorded for the produced compounds in the liquid phase (1 M H2SO4 in water solvation system over the checkpoint files). The energy levels for the lowest vacant orbit (ELUMO), the highest occupied molecular orbit (EHOMO), and the energy
gap (E) between them will all be determined. Since our studies happen in media, parameters have been theoretically collected for the produced compounds in the liquid phase (1 M H2SO4 in water solvation system over the checkpoint files). Acidity The lowest empty orbit (ELUMO) and the highest occupied orbit (EHOMO) will have their energy levels determined, and the difference between them, or what is known as the energy gap (E), is found in equation (2). The ionization potential energy and electron affinity (A, the negative of ELUMO), are found given by Koopman's theorem (Sastri and Perumareddi 1997).

\[\Delta E = E_{HOMO} - E_{LUMO} \quad (2) \]

\[I = -cc \quad (3) \]

\[A = -E_{LUMO} \quad (4) \]

The chemical potential and chemical hardness were computed using equations (5) and (6) and the highest occupied \(E_{HOMO} \) and lowest unoccupied molecular orbitals \(E_{LUMO} \), respectively, in accordance with Koopman's theory. Chemical hardness is a measure of an atom's resistance to charge transfer (Pearson 1988).

\[\mu = \frac{I + A}{2} = \left(\frac{E_{HOMO} + E_{LUMO}}{2} \right) \quad (5) \]

\[\eta = \frac{I - A}{2} = \left(\frac{E_{HOMO} - E_{LUMO}}{2} \right) \quad (6) \]

The energy decrease between the donor and acceptor atoms is expressed by the electricity index (\(\omega \)), which is to the equation (7):

\[\omega = \frac{\mu^2}{2\eta} \quad (7) \]

Electronegativity (\(\chi \)) which represents the ability of molecules to pull an electron towards them, has been calculated as in the equation (8):

\[\chi = \frac{I + A}{2} = \left(\frac{E_{HOMO} + E_{LUMO}}{2} \right) \quad (8) \]

RESULTS AND DISCUSSION

Synthesis:

The geometrical optimization findings of [K2D1] Figure (1) parameters show that the data from the FT-IR, 1H NMR, and 13C NMR are similar. The carbonyl group in the aldehyde K2 was bound to the nitrogen atom of the main amine by Schiff base and resulting from the interaction of the N atom in the primary amine with the carbonyl group in the aldehyde or ketone, forming an isomethine group. This interaction between LOMO and HOMO then caused the electron transfer of the responsive species. Because they develop quickly and are stable, aromatic chemicals were chosen. A molecule is more likely to transfer an electron than under the observed circumstances. Indicators of By counting the HOMO's energy (EHOMO), the thermodynamic functions, internal energy, enthalpy, and free compression energy all agreed on their respective positions This is shown in Table (1).

![Fig. 1: Optimized geometry for K2D1 at the B3LYP/6-31G basis set.](image-url)
Table 1: Calculation of thermodynamic functions of K_2D_1, K_2D_3 and K_2D_5 by B3LYP.

<table>
<thead>
<tr>
<th>Molecules</th>
<th>E KCal/Mol</th>
<th>H (Hartree/Particle)</th>
<th>S Cal/Mol-Kelvin</th>
<th>G Hartree</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_2D_1</td>
<td>134.694</td>
<td>0.215592</td>
<td>161.794</td>
<td>0.138719</td>
</tr>
</tbody>
</table>

Biological Activity:

Antibacterial:

By conducting the test, it was found that the prepared compounds (K_2D_1) have antibacterial activities. The examination was carried out using the agar disc diffusion method (Kareem et al. 2021). Both positive and negative bacteria, such as *Staphylococcus aureus*, are successfully eliminated. (DMSO) was used. Each of these bacteria was produced in bacterial suspensions at a concentration of 0.5-0.65. It showed a good antibody due to its structure that interacts with the cell wall of the bacteria that were examined (Sangthong et al. 2011). This is shown in the Table 2.

Table 2: Anti-bacterial activity for prepared compounds 1mg/mL concentration.

<table>
<thead>
<tr>
<th>Comp. s</th>
<th>Gram +ve (Staphylococcus aureus)(mm)</th>
<th>Gram –ve (E-coli) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_2D_1</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Pic. 1: Anti-bacterial activity of compounds

Table 3 The percentages of the components of the prepared vehicles by CHNS.

<table>
<thead>
<tr>
<th>COMP.</th>
<th>Calculated %</th>
<th>Found Value %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>H</td>
</tr>
<tr>
<td>K_2</td>
<td>61.35</td>
<td>3.40</td>
</tr>
<tr>
<td>K_2D_1</td>
<td>62.34</td>
<td>3.46</td>
</tr>
</tbody>
</table>

Electrochemical Method:

The following Figures (1-3), show the electrochemical analysis of Tafel curves (effective polarization) to find out the effect and efficiency of the prepared inhibitor (as an inhibitor of the corrosion process for a
selected sample of steel in a 1M H2SO4 solution with several concentrations of the prepared compound (K2D1) (0-200) at temperatures from (303 – 323K) and demonstrates the measured electrochemical characteristics, such as the corrosion potential (Ecorr), corrosion current (Icorr), anodic and cathodic (βc) Tafel slopes, inhibition efficiency (Ƞ%), and surface coverage (Ƞ). It was found that by adding the inhibitor, the current density increases at a constant concentration and with an increase in temperature, while the current density decreases with an increase in the concentration at a constant temperature. With the increase in temperature, the corrosion process increases, and thus the inhibition efficiency increases. It turned out that the highest efficiency obtained from the experiments was at a concentration of 200 parts of a million at a temperature of 323K (Salman and Manshad 2019).

![Fig. 1. Polarization curves for the carbon steel corrosion without and with different K2D1 concentrations at 313 K.](image)

![Fig. 2: Polarization curves for the carbon steel corrosion without and with different K2D1 concentrations at 313 K](image)

![Fig. 3: The impact of temp. variation on the effectiveness of K2D3 inhibition various does.](image)

Adsorption Effect:
When the inhibitor was added, a protective layer was formed for corrosion and protection from the acidic medium on the surface of the alloy resulting from the adsorption process and through adsorption isotherms. It shows us the interaction between the environment and the metal (Hassan and...
Hadi 2015). Conducting the test in a thermal range (303 - 323) K by the two types of chemical and physical adsorption and determines the adsorption mechanism by the known Frumkin, Temkin, and Langmuir adsorption equations. The adsorption in our interaction was found to be consistent with the Lanckmuir relationship, and the constants (Kads) were extracted on the basis of Lanckmuir equation (9). We show this in Figure (4), the relationship between the adsorption of the prepared inhibitor with the temperature in the acidic solution and extract the value of free energy (ΔGads) for adsorption from equation (10) and then illustrate it by drawing between Log kads values against 1 / T Figure (5) according to equation (11) to calculate the enthalpy reaction ΔHads, and through the values of ΔGads and ΔHads, the entropy values ΔSads for this process are found from equation (12)

\[
\frac{C_{inh}}{\theta} = \frac{1}{K_{ads}} + C_{inh} \tag{9}
\]

\[
\Delta G_{ads} = -RT \ln (55.5 \text{kads}) \tag{10}
\]

\[
\log K_{ads} = \left(\frac{\Delta H_{ads}}{2.303RT} \right) + C_{con} \tag{11}
\]

\[
\Delta G_{ads} = \Delta H_{ads} - \Delta gads \tag{12}
\]

\[
\Theta = \frac{\eta}{100} \tag{13}
\]

Fig. 4: K2D3 adsorption in 1M H2SO4 with a temperature range of (303-333) K according to the Langmuir equation

Fig. 5: A Correlation between log Kads vs. 1/T for mild steel corrosion at temp. from (303-323) K and various K2D3 conc. In 1M H2SO4.

Corrosion Kinetics Study:

It is clear that the temperature has an effect on the corrosion process and on the speed and kinetics of corrosion so it is studied and calculated to obtain information about its effect on the rate of corrosion and through the Arrhenius equation (14) \(\log I_{corr} = \log A - \frac{Ea}{2.303RT} \) Where corrosion: corrosion current density, A: Arrhenius constant, Ea: activation energy, R: the gas constant, T: temperature (Abboud et al., 2012). Figure (6), shows the relationship between Log icorr versus 1/T for the corrosion of the alloy in acidic media with the presence or absence of the inhibitor. Also, the activation energy was calculated from the slope of the drawn relationship and Log A, and it was calculated from the intersection of the drawn lines, and through the calculations that we extracted, the enthalpy is calculated ΔH* for the activation energy, randomness or entropy ΔS* and the free compressive energy ΔG* through the
following relationship (Amin et al., 2011).

$$I_{corr} = \frac{RT}{Nh} e^{\frac{-\Delta S^*}{R}} e^{\frac{\Delta H^*}{RT}}$$

$$\Delta G^* = \Delta H^* - T\Delta S^*$$

Where N: Avogadro's number, h: is Plank's constant. This can be seen in the form () the linear relationship between the Log icon / T versus 1 /T, slopes ($\Delta H^*/2.303R$) and intercepts (Log $R/N h +\Delta S^*/2.303R$). Table (5), shows values E_a, ΔH^*, ΔS^*, ΔG^*. The table () of the kinetic parameters data confirms that the activation energy increased with the presence of the organic inhibitor that we prepared compared to the absence of the inhibitor (K_2D_1) in relation to the enthalpy ΔH^* (Sliem et al. 2019). The movement of the reacting molecules on the alloy, which is transformed into adsorbent molecules and the entropy increases in the presence of the inhibitor. The free energy values indicated that the process was spontaneous (El Ouali et al. 2010), (Ahmed, Ali, and Khadom 2019).

![Fig. 6](image)

Fig. 6: shows the Arrhenius ratio for the corrosion of carbon steel in 1MH2SO4 at temperatures between 303 and 333 K. B: The correlation between log $icorr/T$ and $1/T$ both with and without AS across the temperature from 303-333 K.

Table (5). The activation parameters for carbon steel corrosion at 303–333 K in the presence and absence of different K2D2 concentrations.

<table>
<thead>
<tr>
<th>CAS (mM)</th>
<th>E_a kJ mol$^{-1}$</th>
<th>ΔH^* kJ mol$^{-1}$</th>
<th>ΔS^* J mol$^{-1}$ K$^{-1}$ \times 10$^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>44.5285</td>
<td>41.9284</td>
<td>59.7338</td>
</tr>
<tr>
<td>50</td>
<td>43.3606</td>
<td>40.7604</td>
<td>64.0285</td>
</tr>
<tr>
<td>100</td>
<td>41.5588</td>
<td>38.9586</td>
<td>70.6515</td>
</tr>
<tr>
<td>150</td>
<td>39.0793</td>
<td>36.4791</td>
<td>79.3902</td>
</tr>
<tr>
<td>200</td>
<td>42.2462</td>
<td>39.6460</td>
<td>70.9157</td>
</tr>
<tr>
<td>Blank</td>
<td>36.4121</td>
<td>33.8100</td>
<td>74.7260</td>
</tr>
</tbody>
</table>

Quantum Chemical Calculations (DFT):

To ascertain the reality of the interactions between the particles of the prepared compounds and the surface of the alloy, DFT tests were conducted, as the composition of the particles affects the physical and chemical properties of the particles. For the optimized Shapes for the upper filled orbitals (HOMO) and the lower unoccupied (LUMO), where the results showed the electronic density distribution of (HOMO) that the compound has the ability to give electrons to the adsorbent centers in the surface of the alloy distributed in general, especially the π-orbitals of the cyclic compounds that contain Heterogeneous atoms. As for the density distribution of (LUMO)(Tan et al. 2018) its ability to absorb electrons from the surface of the alloy to the adsorbent centers. Because it contains a strong cloud group and has the highest ability to give and receive electrons, where this
feature has the tendency of molecules to give and receive in relation to energy levels (HOMO). This is shown in Table (7), the highest ability to give an electron and (LUMO) levels, the highest ability to accept it whereas in the second molecule containing an electron-donating group, this difference was less pronounced. Energy Gap (E(HOMO-LUMO), ΔE = EHOMO–ELUMO), which is a higher inhibition efficiency, i.e. the formation of a protective layer through the adsorption of inhibitor molecules on the surface of the alloy. and this indicates that the protonal form has a good effect on the inhibition process in acidic media, and thus it achieved High inhibition efficiency according to Table (3)'s findings, the molecules are arranged according to their hardness, which is consistent with the previous sentence's description of the energy gap. This is because, according to the law of chemical hardness's (ᶯ (ev)) Table (8) definition, the arithmetic rate of the difference between the ionization potential and the electronic affinity determines how hard the molecules are. Along with the type of compensated aggregates and the ability of electronic withdrawal and donation to induce (Jennane et al., 2019).

Table 7: Ehomo and elomo of k₂d₁ by basis set 6-31g at b3lyp

<table>
<thead>
<tr>
<th>Molecular</th>
<th>E HOMO (ev)</th>
<th>E LOMO (ev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K₂D₁</td>
<td>-0.20284</td>
<td>-0.17883</td>
</tr>
</tbody>
</table>

Table 8: Guantum parameters for, k₂d₁ molecules by basis set 6-31g at b3lyp

<table>
<thead>
<tr>
<th>Molecules</th>
<th>ᶯ (ev)</th>
<th>IP (ev)</th>
<th>EA (ev)</th>
<th>Energy gap (ev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K₂D₁</td>
<td>0.012005</td>
<td>0.20284</td>
<td>0.17883</td>
<td>0.02401</td>
</tr>
</tbody>
</table>

CONCLUSIONS

The new barbiturate derivative was identified by FTIR, HNMR and 13C techniques. It was experimented as an inhibitor for carbon steel alloys in H₂SO₄ 1M solution with good results. Through electrochemical experiments, it was discovered that the produced compound effectively inhibits the corrosion impact on the alloy’s surface. The inhibition efficiency raised with increasing the concentration and temperature rise, and vice versa. According to the Langmuir adsorption equation, molecules are adsorbed on the alloy surface. DFT studies revealed that there are several molecular adsorption sites and that these sites have molecular orbitals with energy gaps and levels.

REFERENCES

Hassan, S A, and A K Hadi. 2015. “Sudan III as Corrosion Inhibitor for Carbon Steel St37–2 in H2SO4 Solutions.”

Global Pharma Technology 12(01).

