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Cichlid fish phylogeny is presented for the most taxonomical approaches. 

In this study, the phylogeny of cichlid fish correlation was carried out by various 

analysis based on 18S rRNA gene sequences from GenBank database for 31 

species belonging to 13 genera of Cichlid fish (Teleostei: Cichlidae). The 

alignment of 18S rRNA gene sequences as well as the neighbour-joining tree, 

distance matrix and phylogenetic tree obtained by using bioinformatics 

programs. Alignment of 18S rRNA gene sequences, distance matrix and 

phylogenetic tree results revealed that the majority of species within the same 

genus were closely related to each other (monophylogenetic) while, some 

species were polyphylogenetic within the genus showing a close relationship 

with other genera species. On the other hand, a neighbour-joining phylogenetic 

tree without a distance correction among cichlid species revealed a variation in 

phylogenetic relationship between species where most species within the same 

genus were polyphylogenetic to each other and monophylogenetic to other 

genera species. 

 

INTRODUCTION 

             Cichlidae is the most prosperous family, recording 1700 species, belonging to 250 

genera. Evolution, distribution and genetic markers of cichlid fishes have been recorded for 

most of these species in the inland fisheries of Africa (Snoeks et al., 2011). Cichlids represent 

striking examples of fish adaptive radiation, the phenomenon whereby a single phylogenetic 

lineage diversifies into many ecologically varied species in a short time, especially in eastern 

African great lakes (Dunz & Schliewen, 2013 and Genner & Turner, 2015). Biodiversity loss 

has been identified as a major global environmental issue and much attention has been focused 

on biodiversity conservation (Minelli, 2003). To overlap this problem, genetic data, specifically 

DNA sequences, has been proposed as a criterion in taxonomic identification (Blaxter, 2003; 

Tautz et al., 2003; Savolainen et al., 2005 and Azab et al., 2019).  

 

http://www.eajbsc.journals.ekb.eg/
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         DNA barcoding is a technique for 

identifying fish that involves the use of a 

particular gene or genes based on a 

comparison of a published species marker 

gene sequence with a reference database of 

such DNA sequences, which allows the 

species to be uniquely identified. In general, 

genetic barcodes are useful for defining 

unknown fish species, discriminating 

overlapped species, and determining species 

boundaries as compared to conventional 

morphological taxonomy. This molecular 

approach has been applied worldwide in the 

field of fish taxonomy due to the availability 

of facilities and the reduction of the cost of 

DNA barcoding manipulations (Hebert et al., 

2003 a, b). Furthermore, improving 

bioinformatics approaches makes it easier to 

analyze barcode gene sequences, store them in 

an online DNA database, and retrieve them. 

As a result, even monomorphic fish species 

can now be identified, differentiated, and 

biogeographically distributed using the DNA 

barcode sequence data pool (Bhattacharjee et 

al., 2012 and Bhattacharya et al., 2016). 

              Sequence alignment is an inherent 

issue with using rRNA as barcodes (Lutzoni et 

al., 2000). Since base insertions and deletions 

are common in rRNA sequences, each 

sequence with them must be given gaps in 

order to fit with the others. Since there are no 

universal alignment criteria, assigning gaps to 

DNA sequences is arbitrary (Geiger, 2002). 

As a consequence, even when the alignment 

process is carried out meticulously by 

experienced researchers, human errors can 

occur, particularly in some rRNA sequences 

for which no closely related sequences are 

available to serve as a guide. Apart from the 

complexity inherent in multiple sequence 

alignment, this procedure must often be 

repeated if a new sequence (taxon) is added to 

a dataset prior to analysis. Every year, 200000 

barcode records are expected to be added to 

the database (Hajibabaei et al., 2005). Series 

alignment in the barcode project will become 

repetitive and time-consuming with such a 

large dataset.  

           The multigene families of ribosomal 

RNA (rRNA) are divided into two groups that 

are tandemly arrayed in eukaryotic genomes. 

An external transcribed spacer precedes the 

transcribing regions of the 18S, 5.8S, and 

25S/28S rRNAs, which are separated from one 

another by two internal transcribed spacers 

(ITS), ITS1 and ITS2. Multiple copies of a 

strongly conserved 120-bp transcribing region 

are isolated by a variable non-transcribed 

region in the minor class (5S rRNA genes) 

(NTS) (Eickbush, 2007). Fish cytogenetics is 

a burgeoning field of study that provides data 

for taxonomy and the study of phylogenetic 

relationships among taxa (Carvalho et al., 

2017; Ferreira et al., 2017 and Nirchio et al., 

2018). Other details on the karyotype include 

the mapping of 45S or 5S rDNA or the 

classification of heterochromatin patterns 

indeed, the sum and distribution of these 

groups of repetitive sequences that 

characterize different genomic organization 

has been linked to neotropical cichlid 

karyotypic evolution (Feldberg et al., 2003 

and Poletto et al., 2010). 

        A simple correlation analysis based on 

18S rRNA gene sequences from GenBank 

database for 31 species belonging to 13 genera 

of Cichlid fish (Teleostei: Cichlidae) is the 

main purpose of current research. Alignment 

of 18S rRNA gene sequences, distance matrix 

and phylogenetic tree may be used as 

convenient and accurate DNA barcodes for 

different species. 

MATERIALS AND METHODS 

 The ribosomal RNA (18S rRNA) gene 

sequences of 31 species belonging to 13 

genera of Cichlid fish (Teleostei: Cichlidae) 

were downloaded from the GenBank 

database. Partial sequences of 18S rRNA 

gene from five published rRNA datasets 

(Booton and Fuerst, 2001; Rodgers et al., 

2003; Nevado et al., 2009; Hardy, 2014 and 

Ramos et al., 2016) were downloaded from 

GenBank for analysis (Table 1). An 

unpublished dataset of partial 18S rRNA 

sequences from 8 cichlid fish species was 

also included in the analysis. 

           Clustal Omega is a new multiple 

sequence alignment program that uses 
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seeded guide trees and HMM profile-profile 

techniques to generate alignments between 

three or more sequences incorporated the 

common approaches of phylogenetic 

reconstruction, including neighbor-joining 

(NJ), maximum parsimony (MJ) and 

maximum likelihood (ML). The Alignment 

of 18S rRNA gene sequences as well as the 

neighbour-joining tree without distance 

corrections was obtained by using Clustal 

Omega- Multiple Sequence Alignment 

(Sievers and Higgins, 2018 and Sievers et 

al., 2020). Whereas, the distance matrix and 

Graphical Phylogenetic Tree with bootstrap 

values (Topological Algorism) were 

analysed for 18S rRNA sequences by using 

GeneBee ClustalW 1.83 (ClustalW with 

character counts) (Larkin et al., 2007). 

 

Table 1. List of Cichlid species, Abbreviations, source references, sequence information and 

Genbank ACCESSION No.  of the 31 studied datasets  

 
 

RESULTS 

           Alignment of 18S rRNA gene 

sequences of 31 species belonging to 13 

genera of Cichlid fish revealed that the 

species related to the same genus are 

monophylogenetic. While the species related 

to different genera are polyphylogenetic 

(Figs. 1 and 2).    
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Fig. 1: First variable region of Aligned partial sequences of 18S rRNA gene among the 

investigated cichlid fishes. 

      ' ' - the average weight of column pair exchanges is less than the weight matrix mean value 

      '.' - is less than mean value plus one SD 

      '+' - is less than mean value plus two SD 

      '*' - is more than mean value plus two SD 

 
Fig. 2: Second variable region of Aligned partial sequences of 18S rRNA gene among the 

investigated cichlid fishes. 

 ' ' - the average weight of column pair exchanges is less than the weight matrix mean value 

      '.' - is less than mean value plus one SD 

      '+' - is less than mean value plus two SD 

      '*' - is more than mean value plus two SD 
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       Table (2) and Fig (3) represented the 

results of a distance matrix and phylogenetic 

tree with bootstrap values (Topological 

Algorism) based on the alignment of 18S 

rRNA gene sequences of cichlid fishes.  A 

closely related species of genus Maylandia 

(M. zebra) are monophylogenetic with a 

distance of 0.144. In the meantime, the 

phylogeny of genus Neolamprologus (N. 

leloupi, N. savoryi, N. tetracanthus, N. 

multifasciatus, N. calliurus, N. 

multifasciatus, N. fasciatus and N. similis) 

proved that all species were closely related to 

each other. On the other hand, the species 

related to genus Oreochromis (O. aureus, O. 

niloticus, and O. esculentus) are 

monophylogenetic to each other apart from 

O. mossambicus was in a distance about 

0.529 from other species of the same genus. 

Similar results were recorded for genus 

Lepidiolamprologus (L. attenuatus, L. 

profundicola, L. elongatus and L. 

cunningtoni) where L. attenuatus is 

polyphylogenetic with other grouped 

monophylogenetic species. The phylogeny 

of genus Lamprologus (L. ocellatus, L. 

ornatipinnis, L. signatus, L. callipterus) 

represented monophylogenetic relationship 

between the species except L. lemairii was in 

a distance with others.  

 Polyphylogenetic relationship with 

varied distance matrix was recorded between 

different genera where genus Andinoacara 

(A. pulcher) was found in a distance of 0.253 

with genus Amatitlania (A. nigrofasciata) 

and distance of 0.211 with genus Geophagus 

(Geophagus sp.) indicated that these genera 

were relatively closed. While the distance 

with genus Astatotilapia (A. atifasciata) was 

0.877 indicated the polypgylogenetic 

relationship between two genera. A similar 

relationship with a distance of 0.326 was 

recorded between genera Pelmatolapia (P. 

mariae) and Rocio (R. octofasciata).      

 Generally, the species within the 

same genus were monophylogenetic, while 

the species from different genera were found 

to be polyphylogenetic as represented in 

current results.  These data were in contrast 

to that recorded by the neighbour-joining 

phylogenetic tree without a distance 

correction based on alignment of 18S rRNA 

gene sequences among cichlid species which 

revealed a great confusion in the 

phylogenetic relationship between species 

where some species were polyphylogenetic 

within the same genus and 

monophylogenetic with other genera (Fig. 

4). 
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Table 2. Matrix of genetic distances based on alignment of 18S rRNA gene sequences 

              of the studied species. 

 
  

 
Fig. 3: Phylogenetic tree with bootstrap values (Topological Algorism) based on alignment of   

           18S rRNA gene sequences among the investigated cichlid fishes. 
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Fig. 4: Neighbour-joining phylogenetic tree without a distance correction based on  

           alignment of 18S rRNA gene sequences among the investigated cichlid fishes.  
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DISCUSSION 

            Comprehensive phylogenetic analysis 

of the cichlid fish using multi-marker 

molecular datasets comprising nuclear and 

mitochondrial loci revealed high levels of 

incongruence between them (Elserafy et al., 

2007; Genner and Turner, 2012; Willis et al., 

2013; Meier et al., 2017 and Ford et al., 2019). 

The 18S rRNA gene is considered as evidence 

of significantly different phylogeny in higher 

organisms (Elserafy et al., 2007 and Nirchio, 

et. al., 2020).  

           The current alignment of 18S rRNA 

gene sequences of 31 species belonging to 13 

genera of Cichlid fish revealed that the species 

related to the same genus were 

monophylogenetic, while the species from 

different genera were found to be 

polyphylogenetic. These results were 

Compatible with Shull et al. (2001), who 

discovered the phylogenetic relationships of 

36 adephagan species and 13 outgroup species 

depend on alignment of 18S rRNA sequences. 

Furthermore, Marescalchi (2005) proved that 

molecular data demonstrated the Andinoacara 

Rivulatus (Cichlidae: Cichlasomatini) defined 

within the genus as a monophyletic group.  

          Our analysis of the distance matrix and 

phylogenetic tree based on alignment of 18S 

rRNA gene sequences of cichlid fishes proved 

that species of genus Maylandia are 

monophylogenetic. Conversely, some species 

of genus Oreochromis are monophylogenetic 

to each other apart from O. mossambicus was 

polyphytogenetic with other species of the 

same genus. These results resembled that 

found by Poletto et al., (2010), who detected a 

variable number of clusters among species 

(one Asian, 22 African, and 30 South 

American cichlid species) based on the genetic 

mapping of 18S ribosomal RNA genes.  

 Chu et al., (2006) used 18S ribosomal RNA 

datasets from a wide variety of organisms 

(from archaea to tetrapods) at taxonomic 

levels ranging from class to species. His 

suggestion was in agreement with our results 

where a phylogenetic relationship with varied 

distance matrix was recorded between 

different genera i.e., genus Andinoacara was 

found in a distance of 0.253 with genus 

Amatitlania and distance of 0.211 with genus 

Geophagus indicated that these genera were 

relatively closed. While the distance with 

genus Astatotilapia was 0.877 indicated the 

polyphylogenetic relationship between 

two genera. 

           The present data recorded by the 

neighbor-joining phylogenetic tree without a 

distance correction based on alignment of 18S 

rRNA gene sequences among cichlid species 

revealed a great confusion in phylogenetic 

relationship between species where some 

species were polyphylogenetic within the 

same genus and monophylogenetic with other 

genera. Heeg and Wolf (2015) reviewed the 

analysis using primary sequences 

simultaneously in inferring neighbor-joining, 

maximum parsimony and maximum 

likelihood trees, with increasing robustness 

and accuracy of reconstructed phylogenies. It 

was concluded that neighbor-joining and 

maximum parsimony analyses failed in 

inferring a robust phylogenetic tree, while the 

maximum likelihood tree provides a supported 

phylogeny.  

          In conclusion, alignment of 18S rRNA 

gene sequences among cichlid species as well 

as phylogenetic tree with bootstrap values 

revealed a great accuracy in phylogenetic 

relationship among species.  
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