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            Numerous different cell groups, such as endothelial cells, pericytes, 

macrophages, mesenchymal stem cells, smooth muscle cells, and stromal 

fibroblasts, can be found in the tumor microenvironment Caveolin-1, which is 

also referred to as caveolin, Cav-1, or VIP21 is a structural membrane protein 

that has been demonstrated to suppress breast tumor growth and metastasis. 

Numerous studies have determined Cav-1 as a potential therapeutic target for 

breast cancer due to its inhibitory effects on cancer-associated pathways. In 

preclinical studies, expressed Cav-1 has been demonstrated to prevent breast 

tumor cell invasion, and the lack of stromal Cav-1 is linked to early breast 

cancer development. According to certain research, Cav-1 may also inhibit the 

late phase of autophagy via HIF-1 in triple-negative breast cancer. 

Furthermore, Cav-1 has been demonstrated to prevent breast tumor stem cells' 

self-renewal ability and aerobic glycolysis activity. These data show that Cav-

1 may play an important function in breast tumor inhibition, as a possible target 

for treatment of breast cancer. 

INTRODUCTION 

Tumor Microenvironment: 

               Numerous different cell groups, such as endothelial cells, pericytes, macrophages, 

mesenchymal stem cells,  smooth muscle cells, and stromal fibroblasts, can be found in the 

tumor microenvironment (Mj and D 2001; Mj et al., 2002). The stromal fibroblasts appear to 

undergo reprogramming through interactions with cancer cells in this scenario, adopting a more 

myo-fibroblastic phenotype (Rønnov-Jessen and Bissell 2009). These cells, which are 

becoming increasingly commonly known as cancer-associated fibroblasts (CAF), can 

encourage the progression and metastasis of tumors, though the precise mechanism by which 

they do so is still largely unknown (Orimo et al., 2005; Orimo and Weinberg 2006). 

Additionally, this tumor microenvironment (also known as the cancer stroma) has more 

angiogenic elements and a higher influx of inflammatory cells (Watnick 2012). It's interesting 

to note that tumor-associated fibroblasts (TAF) respond similarly to fibroblasts that repair 

wounds. They have increased contractility, promoted angiogenesis, and boosted epithelial 

growth by secreting cytokines, growth factors, and extracellular matrix (ECM) (Watnick 

2012). Neither natural quiescence nor apoptosis occurs in CAFs, as is the case during wound 

closure instead, they stay activated (Watnick 2012). It is already well acknowledged that the 

tumor microenvironment is crucial to the appearance and growth of breast cancer (Tlsty and 

Hein 2001; Kalluri and Zeisberg 2006a). The tumor stroma may encourage spread and 

metastasis, two malignancy-related hallmarks that are to blame for the failure of cancer 

treatments, recurrence, and mortality.  
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               A significant percentage of the 

tumor microenvironmental components, such 

as the extracellular matrix (ECM) (Chen and 

Che 2014), pericytes (Glenney and Zokas 

1989), endothelial cells, immune and 

inflammatory cells (Razani et al., 2002a), and 

secreted diffusible growth factors/cytokines, 

are cancer-associated fibroblasts (CAFs) 

(Dvorak et al., 2011).Several studies have 

found that CAFs are important for the 

development of cancer. According to reports, 

CAFs continue to play a significant part in the 

remodeling of the ECM, which has an impact 

on the growth, survival, and movement of 

tumor cells (Chun et al., 2006; Yu et al., 

2014; Zhou et al., 2014; Kan et al., 2014). 

Also, activated CAFs produce extracellular 

matrix components, matrix 

metalloproteinases, hepatocyte growth factor, 

epidermal growth factor, collagen types I and 

IV, extra domain fibronectin, and basic 

fibroblast growth factor (Kalluri and Zeisberg 

2006b; De Wever et al. 2008). Additionally, 

CAFs exhibit the capacity to advertise the 

growth of neighboring tumor cells and inhibit 

tumor cell apoptosis.  

Main Text: 

Breast Cancer: 

             Breast cancer is an extremely 

prevalent and diverse form of cancer that 

primarily affects women, causing over two 

million new cases and approximately 630,000 

deaths worldwide in 2018 (Gp et al., 2018). 

While researchers have typically 

concentrated their efforts on understanding 

the development of cancerous epithelial cells, 

they have paid relatively little attention to the 

role of the neighboring stroma or 

microenvironment (Elsheikh et al., 2008). 

Genetic changes in vivo that enable a cell to 

obtain "transformed" properties, that is 

uncontrolled cell proliferation, the capacity to 

evade apoptotic pathways, greater 

invasiveness, the capacity to undergo 

metastasis, and the capacity to evade immune 

detection, are what is known as the multistep 

process of carcinogenesis (Cotran et al., 

1999). These genetic changes may be the 

product of acquired somatic changes made 

throughout a cell's lifetime or inherited 

germline transmission. Breast cancer is a 

neoplastic disorder that is extremely 

heterogeneous at both the molecular and 

clinical levels. It consists of various 

molecular subtypes, each of which typically 

correlates to a different prognosis and 

therapeutic responsiveness (Minafra et al., 

2012, 2014; Bravatà et al., 2013a, b). 

Although treatment strategies for BC have 

lately made significant progress as shown in 

Figure 1 (Tremont et al., 2017; Moo et al., 

2018; Zughaibi et al., 2022), death and 

recurrence rates are still too high (Rl et al., 

2015). According to new research, 

phosphorylation of Cav-1 may be important 

in activating a cancer cell survival pathway. 

This discovery could lead to the creation of 

new cancer treatment strategies (Jiang et al., 

2022). It will be essential to comprehend the 

unique immunomodulatory mechanisms of 

the breast cancer microenvironment in order 

to develop novel therapeutic strategies 

(Hanamura et al., 2023). The tumor's 

epithelial components have received most of 

the attention in the research of breast cancer 

up until lately, with the surrounding tumor 

stroma receiving little consideration. The way 

breast cancer is viewed is changing as a result 

of new data that points to a crucial interaction 

between the mammary epithelia and the 

nearby tumor stroma.  

 

 

 

 

 

 

 

 



Caveolin-1 As A Novel Therapeutic Target For Breast Cancer 

 

693 

 
Fig.1:  Different methods for treatment of breast cancer. 

 

Caveolae and Caveolin-1:  

              Caveolae (plasma membrane 

invaginations in the shape of flasks) are 

experts in lipid rafts, which can be seen in 

electron micrographs as plasma membrane 

invasions measuring 50–100 nm. Adipocytes, 

endothelial cells, and fibroblasts are examples 

of fully differentiated mesenchymal cells that 

contain caveolae (Razani et al., 2002b). 

Microdomains called caveolae are involved in 

vesicular trafficking and signal transmission 

(Galbiati et al. 2001a). Most cell types have 

caveolae, which are found on the cell 

membrane. Caveolins are the main protein 

component of these structures, including Cav-

1, Cav-2, and Cav-3.  Cav-1 and Cav-2 are 

found in all human tissues, but Cav-3 is found 

only in muscles (Qian et al., 2019).  The 22-

kDa membrane protein caveolin-1, which 

combines with caveolin-2 to create hetero- 

and homo-oligomeric complexes, is a vital 

component of the caveolae's coat structure 

(Monier et al., 1995; Sargiacomo et al., 

1995). Co-expressed with Cav-2 in cells from 

various tissues, which include endothelium, 

neural tissues, mesenchyme, as well as some 

epithelial cells, Cav-1 is a member of a highly 

conserved gene family. The gene of caveolin-

1 has three exons and is translated into the 

endoplasmic reticulum as either the alpha-

isoform, which is a full-length protein with 

178 amino acids (aa), or beta-isoform, which 

loses the first 32 aa (Koike et al., 2010).  

Compared to luminal cells, myoepithelial 

cells primarily express caveolin-1 (Jones et 

al., 2004; Sm et al., 2006). By combining the 

activities of a variety of signaling molecules, 

such as glycosyl-phosphatidylinositol-linked 

proteins, Src-family tyrosine kinases, H-Ras, 

epidermal growth factor receptor (EGFR) 

(Couet et al., 1997b), HER2 (Engelman et al., 

1998a), and estrogen receptor (ER), caveolae 

can function as molecular hubs (Lisanti et al., 

1994). Caveolin-1's distinctive topology 

makes this possible. The caveolin-scaffolding 

domain (CSD) (Couet et al., 1997a), which 

keeps components in a restrained 

conformation via a consensus "caveolin-

binding motif," is required for interactions 

with these proteins and confers endogenous 
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negative control of several kinases  (Couet et 

al., 1997a, b). Caveolae function, which is 

involved with numerous cellular functions 

that as vesicular transportation, cholesterol 

homeostasis, migration of cells, cell cycle, 

and polarity of cells, is greatly influenced by 

Cav-1. Through the caveolin-scaffolding 

domain, this molecule has a direct interaction 

with pro-proliferative molecules like EGFR, 

ERBB2, and PI3K and negatively regulates 

signaling pathways that govern cell 

proliferation, differentiation, adhesion,  

apoptosis, and invasion (Liu et al.,2002; 

Williams and Lisanti 2005; Sotgia et al., 

2006; Felicetti et al., 2009). Cav-1 has also 

been linked to tumor development and 

metastasis (Ting Tse et al., 2012; Patani et al., 

2012; Chanvorachote and Chunhacha 2013). 

Caveolin-1 As A Negative Regulator For 

Glucose Metabolism:  

               Unusual metabolism is one of the 

characteristics of malignancy (Hanahan and 

Weinberg 2011). Therefore, a possible cancer 

treatment method involves focusing on the 

metabolic variations between healthy cells 

and cancer cells (Martinez-Outschoorn et al., 

2017). In order to meet their bioenergetic 

needs, cancer cells primarily use glycolytic 

metabolism, Normal cells, on the other hand, 

largely utilize mitochondrial oxidative 

phosphorylation (OXPHOS). The "Warburg" 

effect has been given to this occurrence. 

Comparing breast cancer cells to mammary 

epithelium cells revealed that breast tumor 

cells also had an increased glycolytic 

metabolism (Wang et al., 2020). As a result, 

pharmacological inhibition of breast cancer 

cells' glycolytic metabolism offers a potential 

cancer-specific eradication method. 

Inhibitors of glycolysis are currently being 

screened with an increasing emphasis on 

glycolytic pathway targeting. These are some 

examples: glycolytic metabolism's rate-

limiting enzymes and glucose transporters 

(GLUTs) (Hexokinase 2, pyruvate kinase M2, 

and phosphofructokinase 1 are a few 

examples). 

              Numerous glycolytic preventives 

have been discovered and shown to be 

successful in slowing the spread of breast 

cancer. For instance, the most commonly used 

glycolytic preventives, 3-bromopyruvate (3-

BrPA) and 2-deoxyglucose (2-DG) have 

demonstrated promising antitumor efficacies 

in breast cancer (Bost et al., 2016). However, 

currently, the systemic toxicities and poor 

selectivity of the existing glycolytic inhibitors 

have prevented them from producing 

satisfactory clinical results in clinical trials. 

Screening for glycolytic inhibitors while 

concentrating on targets linked to glycolytic 

metabolism whose expression is not harmful 

to organisms is one way to address this issue. 

Cav-1, a plasma membrane component 

protein, has been linked to the development of 

malignant tumors and the regulation of 

metabolism (Wang et al., 2017; Jiao et al., 

2019). Additionally, compared to healthy 

breast epithelial cells, breast cancer cells 

expressed Cav-1 at a lower level, and its 

increase may prevent the cancer cells from 

utilizing glycolysis (Jiao et al., 2019; Wang et 

al. 2020). When compared to wild-type mice, 

Cav-1 overexpression in mice via genetic or 

pharmaceutical methods had minimal 

negative impacts on the mice's body weight, 

growth pattern, development, and 

reproductive functions (Yang et al., 2010; 

Jiao et al., 2019). These results indicated Cav-

1 as a prime candidate for the discovery of 

glycolytic inhibitors. 

Caveolin-1 and Cancer:  

            The connection between caveolin-1 

and cancer is still debated. Because Cav-1 

lacks the hallmark characteristics of true 

tumor suppressor or oncogene genes, its 

tumor suppressor and oncogenic properties 

have mostly been deduced from 

circumstantial evidence. Downregulation is 

more common in ovarian (Wiechen et al., 

2001), colorectal (Bender et al., 2000), and 

mesenchymal sarcomas (Wiechen et al. 

2001). Upregulation, on the other hand, has 

been linked to the lung (Couet et al., 1997a; 

Liu et al., 2002), bladder, thyroid (papillary 

variant), esophageal (Kato et al., 2002), and 

prostate carcinomas (Yang et al., 1999). On 

human chromosome 7, the caveolin-1 gene is 

placed at the D7S522 location in the q31.1 

region (Engelman et al., 1998d, e, c, 1999). 
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This chromosomal region (D7S522/7q31.1) 

contains the FRA7G fragile site, which is 

frequently removed from a variety of human 

tumors, as mammary tumors (Galbiati et al., 

2001b). These findings imply that The protein 

caveolin-1 may have antitumor properties and 

show the growth-inhibitory protein Cav-1 

(Galbiati et al., 2001b). The majority of 

oncogenically transformed NIH3T3 cells (but 

not all) and human cancer cells studied thus 

far exhibit significantly decreased caveolin-1 

expression (Sager et al. 1994; Koleske et al., 

1995; Lee et al., 1998; Engelman et al., 

1998a). Furthermore, a transformed-like 

phenotype can be induced by antisense 

suppression of Cav-1 expression (Galbiati et 

al., 1998). 

                Two domains make up caveolins; a 

domain that binds to membranes with three C-

terminal cysteines that can be palmitoylated 

to attach the membrane and a caveolin 

scaffolding domain with an abundance of 

aromatic residues (Byrne et al., 2012; Hoop et 

al., 2012). The CSD directly binds 

cholesterol, participates in the transport of 

cholesterol, and offers a scaffold for the 

caveolar organization of functional proteins 

to influence signaling (Tagawa et al., 2005; 

Bosch et al., 2011). By attaching to an 

aromatic sequence in the interacting partners 

and keeping them inactive, the caveolin-

scaffolding domain functions as a broad-

spectrum protein kinase inhibitor. This tonic 

inhibition is then released upon activation by 

the necessary stimulus (Couet et al., 1997a, 

b). Cav-1 interactions with other signaling 

proteins include adenylyl cyclase (AC), 

heterotrimeric  Gα and Gβγ, Src, PI3 kinase 

(PI3K), endothelial nitric oxide synthase 

(eNOS, NOS 3), protein kinase A (PKA), 

protein kinase C (PKC), and mitogen-

activated protein kinase (MAPK, ERK) 

(Bucci et al., 2000; Patel et al., 2008). In 

pancreatic ductal adenocarcinoma and 

prostate cancer, CSD provides an inhibiting 

binding location for protein phosphatases 1 

and 2A and preserves the importance of Akt 

activation in cell survival (Li et al., 2003; 

Okada et al., 2019). We investigated the idea 

that the scaffolding domain of Cav-1 is 

crucial in controlling tumor cell migration and 

proliferation considering earlier research 

demonstrating the significance of Cav-1 in 

cancer and cell biology. 

Role of Caveolin-1 In Cell Cycle 

Regulation: 

                Cav-1 can reduce G0/G1 phase cell 

cycle arrest and elevate the number of S phase 

cells, by stimulating the extracellular signal-

regulated kinase (ERK) 1/2 pathway and 

raising the expression of cell cycle-associated 

proteins (cyclin D1 and β-catenin) in BT474 

cells (Wang et al., 2014a).  By encouraging 

cell cycle halting in the G2/M phase, that was 

achieved by upregulating p27, p21, and cyclin 

B1 and downregulating cyclin D2, Cav1, on 

the other hand, Functions as a factor that 

inhibits cell proliferation in MDA-MB-231 

and MCF-7 cells. This antiproliferative effect 

was boosted by docetaxel (DTX) (Kang et al., 

2016). As anchorage-independent 

development may be stopped by the re-

expression of Cav-1 using an inducible 

system, Cav-1 acts as a transformation 

inhibitor protein (Engelman et al., 1997). 

Because Cav-1 (/) fibroblasts are 

hyperproliferative and Cav-1 re-expression 

causes their arrest in the G0/G1 phase of the 

cell cycle, Cav-1 acts as a negative regulator 

of cell cycle development (Razani et al., 

2001). It has been determined that the 

caveolin-scaffolding domain of Cav-1 

(residues 82–101), which also serves as a 

broad-spectrum kinase inhibitor, is 

responsible for Cav-1's capacity to cause cell 

cycle halt (Galbiati et al., 2001b).  In 

fibroblasts, where it typically acts as a 

transformation suppressor to stop cell cycle 

development, Cav-1 deficiency is an indicator 

of oncogenic transformation. The 

understanding of the tumor 

microenvironment's growth-promoting 

characteristics may be significantly affected 

by these results.  

Caveolin-1 Associated With Several 

Signaling Pathways Related To Breast 

Cancer: 

               It is believed that Cav-1 relates to 

and maintains in a dormant state, the 

epidermal growth factor (EGF) receptor, 
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proteins of the growth factor activated 

Rasp42/44 mitogen-activated protein kinase 

(MAPK) pathway, ErbB2, in addition 

proteins involved in pro-survival 

phosphatidylinositol 3-kinase/Akt pathway. 

(Razani et al., 2002b). AKT, a homolog of the 

murine thymoma viral oncogene V-akt, is a 

critical component of the PI3K/AKT 

signaling networks. Growth factors, 

inflammation, DNA damage, and PI3K or 

phosphoinositide-dependent kinases (PDK) 

are all known to trigger AKT. Downstream 

effectors like mTOR, glycogen synthase 

kinase 3 beta (GSK3), or fork-head box 

protein O1 are involved in signal 

transmission. (FOXO1). Numerous cancers, 

such as lung, ovarian, and pancreatic cancers, 

have been found to have aberrant 

overexpression or activation of AKT, which 

is linked to higher cancer cell survival and 

proliferation. As a result, AKT blocking 

might be a crucial strategy for treating and 

preventing cancer. A particular active v-Akt 

murine thymoma viral oncogene homolog 1 

state that can control pro-survival signaling 

can be maintained by Cav-1. AKT-

phosphatase proteins 1 and 2A (PP1A and 

PP2A) inhibiting binding to the CSD domain 

of Cav-1 is likely what facilitates this action 

(Song et al. 2019). Recombinant Cav-1 

expressing metastatic mammary tumor cells 

demonstrated a substantial decrease in 

Invasion of Matrigel and significantly 

decreased activity of MMP2 and MMP9 

(Hulit et al., 2000), as well as deregulation 

(Engelman et al. 1998a). The interaction of 

the HER2 and Cav-1 signaling networks is 

poorly understood. A CSD-derived 20-amino 

acid peptide that can stop HER2 

autophosphorylation and kinase activity is 

present in the HER2 kinase domain and 

contains a Cav-1-binding motif that is like the 

EGFR (Engelman et al. 1998a). Endocytosed 

molecules may be regulated to migrate to 

intracellular compartments for degradation 

after being internalized by HER2 through the 

endocytotic pathway, in which caveolae may 

very well play a role. In caveolae-deficient 

BC cells, data even indicate that HER2 

endocytosis occurs via a Cav-1-dependent 

pathway: even after ligand activation, HER2 

may be maintained on the cell surface. 

(Sekhar et al., 2013). Therefore, through its 

downregulation, Cav-1 may help to inhibit the 

growth and proliferation signals from HER2, 

serving as a tumor suppressor.  

              The estrogen signaling pathway has 

been recognized as a contributing factor to the 

evolution of breast cancer. Long-term 

estrogen exposure, as seen in women with 

early onset of menstruation, delayed onset of 

menopause, and use of hormone therapies, is 

strongly linked with a higher chance of 

getting breast cancer (Clemons and Goss 

2001). Increased cell proliferation results 

from estrogen binding to the estrogen receptor 

alpha (ER), which modifies the receptor's 

conformation and activates the ER pathway 

downstream (Carroll et al., 2006). Cav-1 

inhibits the production of its co-activators, 

that is the co-activator protein for AP1 and ER 

receptors (CAPER), an ER transcriptional 

activator and JUN/AP1, in breast cells, acting 

as a negative regulator of estrogen-stimulated 

proliferation (G et al. 2008). ER and (CAPER 

and fork-head box A1 (FOXA1)) co-activator 

genes were expressed more frequently in 

Mammary epithelial cells lacking Cav-1, and 

estrogen hypersensitivity was also present 

(Mercier et al. 2009b). Studies showed that 

Cav-1 reduction in stromal cells caused the 

transforming growth factor beta (TGF beta) 

pathway to be activated without the need for 

a ligand and that Cav-1/ stromal cells showed 

upregulation of 35 transcripts linked to 

stimulated TGF signaling, such as the TGF 

target gene CTGF (Pavlides et al., 2010). 

Reprogramming of the metabolism of CAFs 

with the activation of glycolysis and 

autophagy was also demonstrated to be 

caused by stromal Cav-1 loss (S et al., 2009; 

Chien et al., 2011; C et al., 2012).  

               During pregnancy and lactation, the 

pituitary hormone prolactin closely regulates 

the growth and differentiation of mammary 

epithelial cells (Freeman et al., 2000). During 

pregnancy, prolactin causes the 

lobuloalveolar growth of the mammary gland 

and stimulates lactogenesis, or the production 

of milk, after delivery. It's interesting to note 
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that prolactin works through the cytokine 

receptor family member prolactin receptor 

(Prl-R), which is connected to the kinase Jak-

2, to initiate the lactogenic response (Janus 

kinase 2). The signal transducer and activator 

of transcription 5 is one of the important 

signaling molecules triggered by the Prl-R. 

(STAT5). When STAT5a is phosphorylated, 

it moves from the cytoplasm to the nucleus 

where it activates and relates to the promoter 

of the casein gene to increase milk output 

(Hennighausen and Robinson 1998; Freeman 

et al., 2000). Previous research has indicated 

that Lactation and the expression of Cav-1 are 

inversely correlated. As an example, in the 

mature mouse mammary gland, expression of 

Cav-1 is typically downregulated during late 

pregnancy and the first few weeks of lactation 

(Park et al., 2001). It's interesting to note that 

prolactin seems to be the primary Ras-

dependent facilitator of Cav-1 

downregulation.  

              The lobuloalveolar compartment 

develops more quickly during pregnancy, 

leading to precocious lactation, and STAT5a 

is prematurely activated and 

hyperphosphorylated, according to a study of 

mammary glands lacking Cav-1 (Park et al., 

2002). However, it is still unclear whether 

these Cav-1 null traits are inherent to the 

mammary epithelial cells, or whether 

additional cell types, like adipocytes and 

stromal cells, play a paracrine role. By 

stimulating the transcription of the Cav-1 

promoter, BRCA1 may increase the amounts 

of Cav-1 mRNA. Additionally, Cav-1 may be 

moved from the cytoplasm to the plasma 

membrane because of BRCA1 translation. 

Due to the buildup of Cav-1, which is 

probably controlled by BRCA1, mammalian 

cells have varying levels of invasiveness and 

metastatic capacity. In comparison to BRCA1 

-/- MEFs cells, which had a higher capacity 

for invasion and metastasis, BRCA1 +/+ 

MEFs cells showed decreased invasiveness 

and metastatic ability. Therefore, the 

functional relationships between BRCA1 and 

Cav-1 may be crucial in preventing the 

growth and spread of tumors (Wang et al., 

2008). Cav-1's capacity to inhibit b-

catenin/Tcf/Lef-dependent transcription may 

contribute to its ability to act as a cancer 

suppressor (Quest et al., 2008). opposition to 

apoptosis (Krysan et al., 2004b, a). according 

to this information, it was intriguing to 

hypothesize that Cav-1 might influence COX-

2 expression in addition to survivin via the b-

catenin/Tcf/Lef pathway. It was anticipated 

that by doing this, Cav-1 would lessen the 

amount of PGE2, a crucial downstream 

effector connected to COX-2's function as a 

tumor driver. This assertion is in stark 

contrast to data from the literature that 

showed that Cav-1 is incapable of reducing 

COX-2 activation and, consequently, PGE2 

generation in cells. In light of the known 

relationships between Cav-1, b-catenin, 

Tcf/Lef, and survivin, and also the 

relationship between PGE2 and b-

catenin/Tcf/Lef, prior research examined 

whether decreased PGE2 production as a 

result of survivin expression was influenced 

by Cav-1 expression. (Liou et al., 2001).  

              The outcomes obtained here 

demonstrated that in HEK293T, colon (HT29 

(ATCC), DLD-1), and breast (ZR75) tumor 

cell lines, Cav-1 mediated downregulation of 

COX-2 entail inhibition of b-catenin/Tcf/Lef 

dependent transcription. Furthermore, ectopic 

COX-2 expression or PGE2 supplementation 

overcame Cav-1 imposed restrictions, such as 

the downregulation of survivin and reduced 

cell proliferation. This revealed a constructive 

feedback loop between COX-2 and survivin 

involving PGE2 improved transcription of 

survivin. 

Caveolin-1 as Breast Tumor Suppressor: 

              As it is linked to the formation and 

progression of breast cancer, Cav-1 is said to 

have inhibitory effects on the disease (Sotgia 

et al., 2011; Chiu et al., 2011). Breast stromal 

fibroblasts exhibit high levels of Cav-1 

expression under physiologically normal 

circumstances (Witkiewicz et al. 2009; Patani 

et al., 2012). Cav-1 expression, on the other 

hand, is diminished in the stromal fibroblasts 

of the breast cancer microenvironment and is 

inversely associated with the malignant 

potential of tumor cells. Patients with breast 

cancer who have low or negative stromal 
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fibroblast Cav-1 expression frequently have 

poor survival rates, whereas Patients with 

high stromal Cav-1 expression have a better 

chance of survival (Witkiewicz et al., 2009; 

Sotgia et al., 2012). Overall, stromal Cav-1-

positive breast cancer patients have an 80% 

five-year survival rate; stromal Cav-1-

negative patients have a 20% five-year 

survival rate and are more likely to experience 

early disease recurrence and metastases to 

lymph nodes (Martinez-Outschoorn et al., 

2010). Although the Cav-1 in the stroma has 

prognostic importance downregulation in 

breast tumor patients has been documented, 

the precise mechanism is still unknown (Du et 

al., 2014).  

             To fully assess Cav-1's function as a 

cancer suppressor, more research into the 

processes involved in the protein's expression 

is required. The relationships between Cav-1 

mRNA, tumor stromal fibroblasts, and tumor 

cells must also be verified. Fibroblasts, which 

are important cancer stromal cells, are crucial 

to tumorigenesis, tumor growth, and spread. 

They release a variety of chemicals that may 

block apoptosis, encourage proliferation, and 

aid in the angiogenesis of tumors (Cirri and 

Chiarugi 2011; Buckley 2011). Therefore, it 

is important to comprehend the precise 

process by which stromal fibroblasts 

encourage the growth of tumors. Cav-1 

downregulation is a possible route for 

fibroblast oncogenic change. Fibroblasts with 

reduced expression levels or Cav-1 deletion 

can create a tumorigenic microenvironment, 

though the precise molecules involved are 

still unclear (Wang et al., 2014b). Curiously, 

researchers have found lower amounts of 

Cav-1 expression in several human tumor 

cases (Crisan et al. 2008; Kidd et al. 2009), 

pointing to a negative regulatory function for 

Cav-1 in tumor development. 

             Previous studies indicated that Cav-1 

stops the migration and metastases of breast 

tumor cells (Peng et al., 2005; Orimo et al., 

2005; Crisan et al., 2008; Kidd et al., 2009; 

Jezierska-Drutel et al., 2013). Multifocal 

dysplastic lesions formed through the 

complete mammary tree in Cav-1 null mice 

carrying the MMTV-PyMT transgene, and 

lung metastases and mammary tumorigenesis 

were increased (Nagasawa et al., 1996; 

Lewellis and Knaut 2012). Additionally, 

compared to their counterparts in normal 

mammary epithelial cells, human breast 

tumor cells exhibit substantially lower levels 

of Cav-1 expression (Engl et al., 2006). Cav-

1 is a tumor inhibitor in individuals with 

breast tumor supported by all the available 

experimental and clinical data.  In 162 cases of 

breast tumor, Cav-1's mRNA and Protein 

expression levels were investigated by Sagara 

et al. (Sagara et al., 2004) who discovered that 

these levels were inhibited in breast tumor 

tissue when compared to the matching normal 

cells. Additionally, in line with other 

research, it was discovered that decreased 

Cav-1 significantly P=0.041 correlated with 

tumor size (Elsheikh et al., 2008; Zuccari et 

al., 2012). Additionally, Sagara et al., (Sagara 

et al., 2004) used real-time polymerase chain 

reaction to precisely analyze the mRNA 

levels of CAV1 in 162 breast cancer cases. 

The decreased Cav-1 mRNA levels have also 

been found to strongly correlate with growing 

tumour size P=0.041. 

Caveolin-1 Expression In Several Cell 

Lines: 

                Pulmonary endothelial cell and 

mammary gland epithelial cell hyperplasia is 

a consequence of genetic Cav-1 knockout 

(Drab et al., 2001; Razani et al., 2001). 

Additionally, Cav-1 gene deletion causes 

greater susceptibility to oncogenic and 

carcinogenic stimuli (Capozza et al., 2003; 

Cerezo et al., 2009). Cav-1 expression 

inhibits anchorage-independent development 

and reduces proliferation in MCF-7 

mammary adenocarcinoma cells (Liedtke et 

al., 2007). In several rodents and breast tumor 

cell lines of human, primary human cancers, 

ontogenically transformed NIH3T3 cells, and 

primary human cancers Cav-1 mRNA and 

protein are absent or downregulated (Sager et 

al., 1994; Koleske et al., 1995; Bagnoli et al., 

2000; Bender et al., 2000). Protein kinases C 

alpha (PKC-a) and 3-phosphoinositide 

dependent protein kinase-1 (PDK1) stimulate 

the Wnt pathway, cyclin D1, and c-Myc 

transcription in breast cancer cells, and then 
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c-Myc suppresses Cav-1 transcription (Zeng 

et al., 2002). This is supported by the fact that 

forced expression of canine Cav-1 in the 

ZR75 cell line decreases COX-2 expression 

and breaks a feedback loop involving PGE (2) 

induced signaling events linked to the 

transcription of survival genes like COX-2 

and survivin under the control of b-

catenin/Tcf/Lef (Galbiati et al., 2000; 

Rodriguez et al., 2009), which reduces 

proliferation and increases apoptosis (Torres 

et al., 2007).  

               In MTLn3, a metastatic rat 

mammary adenocarcinoma cell line, Cav-1 

has also been shown to reduce the malignant 

phenotype by preventing EGF-stimulated 

lamellipodia extension, inducing a non-motile 

phenotype, and stopping anchorage-

independent growth, which is linked to 

impaired activation of MAPK/ERK signaling 

(Zhang et al., 2000). Absent extra genetic or 

carcinogenic triggers, Cav-1 null mice do not 

form mammary tumors (Le Lay and 

Kurzchalia 2005). Even so, ductal 

hyperplasia, premature lobuloalveolar 

development, and gestational breastfeeding 

are caused by Cav-1 deficiency, and they 

appear to be required for normal mammary 

development (Lee et al., 2002). Human Cav-

1 is ectopically expressed at low levels that 

inhibit tumor development while also 

inhibiting metastasis (Sloan et al., 2004). In 

mammary tumors from MMTV-c-Myc, -

Her2, -Src, -Ha-Ras, and p53 null transgenic 

mice, Cav-1 is also diminished or nonexistent 

(Engelman et al., 1998b). Therefore, Cav-1 

seems to inhibit both growth and change in 

vitro additionally to the growth of mammary 

tumors and metastases in vivo (Williams et 

al., 2004a). Despite these correlations, the 

underlying mechanisms are still unclear. In 

MCF7 cells, Cav-1 production reduces the 

cytoplasmic ER-a pool (Nawaz et al., 1999), 

whereas Cav-1 haplo-insufficient MCF10A 

clones show excessive ER-a expression and 

MAPK activation (Zhang et al., 2005). 

Methyl-b-cyclodextrin promotes ER-a 

expression (Zhang et al. 2005) and displaces 

membranous Cav-1 (Kranenburg et al., 

2001).  

              These results lend credence to the 

idea that dysregulation of Cav-1 may 

upregulate Era at an early stage of the 

molecular etiology of breast cancer (Razandi 

et al. 2003; Acconcia et al., 2005; Pedram et 

al., 2007). Canine Cav-1 is ectopically 

expressed and suppresses E2-induced ERK 

(MAPK) activation while increasing ER 

membrane localization (Razandi et al. 2002). 

Additionally, E2 inhibits the production of 

Cav-1 and speeds up its breakdown, which 

may have an impact on ER interactions over 

a prolonged period and the harmony of 

nuclear/membranous ER signaling. The 

oncogenic and invasive characteristics of 

transformed mammary cell lines are inhibited 

by forced re-expression of Cav-1 (Le et al., 

1996; Zhang et al., 2000; Fiucci et al., 2002). 

When the metastatic 4T1.2 mammary 

carcinoma cell line is orthotopically 

implanted into the mammary gland, Cav-1 

expression reduces metastasis to distant 

organs and slows the development of the main 

tumor (Sloan et al., 2004).  

             A second blow from an 

environmental or genetic insult results in 

advanced, full-blown tumors in mice with 

Cav-1 deficiency, but this is not enough to 

cause cancer growth. For instance, when 

crossed with the tumor-prone mouse 

mammary tumor virus-polyoma middle T 

(MMTV-PyMT) model, Cav-1 (-/-) mice 

show increased tumor formation in the skin 

after exposure to the carcinogen 7,12-

dimethylbenz (a)anthracene and in the 

mammary gland (Capozza et al., 2003; 

Williams et al., 2004b). These findings 

collectively demonstrate how Cav-1 inhibits 

tumor growth in the mammary duct. 

Inactivation of the Cav-1 gene may be a 

crucial first stage in the development of 

mammary tumors. Mechanistically, MECs 

lacking Cav-1 produce and secrete more 

MMP-2/9 than normal. In line with these 

results, Cav-1 expression also prevents tumor 

spread and migration. For instance, it has 

been demonstrated that expression of Cav-1 

in the MTLn3 metastatic cell line inhibits 

lamellipodia invasion and creation brought on 

by EGF in culture (Zhang et al., 2000).  
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Caveolin-1 Mutation: 

               Cav-1 downregulation contributes 

to the development of breast tumor. This 

assumption was also supported by the high 

prevalence of 7q31 deletions in human cancer 

(Carver and Schnitzer 2003), a high 

prevalence of an inactivating Cav-1 mutation 

in breast cancer (Hayashi et al., 2001; Li et 

al., 2006), and Cav-1 downregulation in 

cancer cell lines, which may be related to 

Cav-1 gene promoter hypermethylation. 7q31 

is close to the Cav-1 locus (Sunaga et al., 

2004; Chen et al., 2004). More than half of all 

instances of BC with ER positivity have the 

Cav-1 (P132L) mutation, This causes a 

proline to leucine substitution at amino acid 

position 132 of the transmembrane domain 

(Li et al., 2003, 2006). This mutation causes 

ER overexpression and greater sensitivity to 

estrogen therapy, but it may also be a 

significant risk factor for the growth of breast 

carcinoma (Hayashi et al., 2001; Li et al., 

2003). These findings might therefore offer a 

mechanistic explanation for why breast tumor 

patients with Cav-1 mutations are more likely 

to experience disease recurrence. Cav-1 

(P132L) encourages the expression of ER 

proteins (as evidenced by Western blotting) 

and stimulates ER alpha signaling (as shown 

by gene expression profiling), consistent with 

the link in human breast cancers between this 

mutation and ER positivity.  

              This finding lends further credence 

to the validity of the model. A dominant 

negative Cav-1 mutation that causes up to 

16% of breast tumors to have a proline to 

leucine substitution (P132L) was first 

described by a Japanese team in 2001 

(Hayashi et al., 2001; Lee et al., 2002). 

Previous research looked at Cav-1 variants in 

samples of human breast cancer and 

compared them to ERa expression levels. 

According to prior research, Cav-1 alterations 

only occur in breast tumors that are positive 

Era and not Era negative (Li et al., 2006).  

More precisely, the relative incidence in Era 

positive breast tumors was close to f35%, 

with the overall incidence of Cav-1 mutations 

(P132L and others) in the prior cohort being 

f19%  (Li et al., 2006). Cav-1 mutations and 

ERa overexpression in breast cancer; their 

mechanistic interactions can now be explored 

thanks to these exciting clinical findings.  

             To investigate the impact of Cav-1 

inactivation on ERa signaling, Cav-1 (-/-) null 

mice were used as a model system because the 

Cav-1 P132L mutation acts in a dominant 

negative manner (Lee et al., 2002). By 

increasing Wnt/h-catenin signaling, Cav-1 

deficiency results in the collection of a 

community of adult mammary stem cells, 

which may lead to the overexpression of ERa. 

A proline to leucine substitution at position 

132 of the Cav-1 transcript was discovered by 

Hayashi et al., in 2001. (P132L) (Hayashi et 

al., 2001). It has been discovered through 

subsequent research that the Cav-1 

misfolding within the Golgi complex is the 

mechanism by which the P132L mutation has 

a dominantly negative impact (Lee et al., 

2002).  

              According to the original paper, this 

mutation was present in 15 of 92 primary 

breast cancers. A later study found that the 

P132L mutation was unique to estrogen 

receptor-positive breast cancers; it was not 

present in any of the 23 ER-negative tumors. 

The mutation has been detected in 6 of 32 

EsR-positive tumors or 35% of the total (Li et 

al., 2006). However, using the same 

technique as detailed in the initial paper, a 

later study found that none of the 55 breast 

cancer specimens had the P132L mutation 

(Chen et al., 2004). Furthermore, no 

publications from any other study team have 

shown that this mutation is present in primary 

breast tumors. To determine whether the 

mutation could be discovered in a wider 

collection of primary breast tumor tissues 

utilizing a conventional direct sequencing 

approach and a novel sensitive test. 

Caveolin-1 as a Therapeutic Agent For 

Breast Cancer: 

              Given that Cav-1 is linked to BC 

recurrence and that tamoxifen resistance 

emerged in nearly half of the ER-positive 

patients, the Cav-1 P132L mutation has been 

proposed as a predictor of subpar in reply to 

this medication (Mercier et al., 2009a; Babina 

et al., 2011). The prior research may point to 
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new therapeutic approaches, angiogenesis 

inhibitors not included when they are 

ineffective, and pointing to reducing 

oxidative stress in tumor fibroblasts with 

antioxidants and autophagy inhibitors, 

severing the source of energy for cancer cells 

(Grépin and Pagès 2010; West and Barnett 

2011). One of the most crucial treatments for 

many cancer types, including those of the 

breast, is radiation therapy (RT), which aims 

to control cancer locally at the tumor’s 

location (Di Maggio et al., 2015).  

             The primary study topics in 

radiobiology are the radiosensitivity of 

normal tissues and tumor radio-resistance. 

High levels of stress are brought on by 

ionizing radiation (IR), which includes X-rays 

and high-energy electrons. Many of these 

stresses rely on the type of cell, its genetic 

makeup, the dose rate, and the time after 

irradiation (Hehlgans et al., 2009; Di Maggio 

et al., 2015). The activation of the DNA repair 

signaling cascade and to repair of double-

strand breaks, homologous recombination 

and non-homologous end joining are utilized, 

as well as the maintenance of genomic 

integrity, are both facilitated by the 

upregulation of the Cav-1 protein in relation 

to DNA damaging agents like IR. Since BC 

comes in a variety of types and subtypes, 

there is no singular therapy that can be used 

to treat all patients. The therapeutic options 

used to treat BC today are distinct.  

              Prior research outlined the functions 

of Cav-1 in BC. Cav-1's recently discovered 

roles in BC's epithelium and tumor stroma 

suggest that it may be helpful as a diagnostic 

marker for patient care, guiding clinicians in 

selecting the best-personalized therapy and 

maximizing outcomes. Mimetic peptides 

generated from Cav-1 have tumor suppressor 

activity that may support current anticancer 

treatments and halt tumor growth by 

inhibiting angiogenesis (Gratton et al., 2003). 

Nitric oxide production is also inhibited by 

CSD mimetic peptides, and they may also 

control inflammatory processes in the tumor 

microenvironment  (Bucci et al., 2000). 

Additionally, HER2 autophosphorylation and 

kinase activity can be inhibited by CSD 

compounds. Modulation of the MDR 

phenotype may also be possible through Cav-

1 modification techniques (Cai and Chen 

2004). A novel clinical trial for DCIS 

(Clinical Trials.gov Identifier: 

NCT01023477) may be relevant given that an 

autophagy/lysosome inhibitor called 

chloroquine has the potential to 

therapeutically restore stromal Cav-1. 

Therefore, comprehending Cav-1's function 

in the growth of CAFs might be a crucial new 

stage in the creation of creative treatment 

methods that focus on the tumor 

microenvironment. 

Conclusion  

             Numerous studies have demonstrated 

that caveolin-1 plays a vital function in 

inhibiting and suppressing breast cancer 

progression and metastasis. The loss of 

stromal caveolin-1 has been strongly linked to 

early cancer recurrence, metastasis, and drug 

resistance in breast carcinoma, and it has been 

discovered as a possible method for 

treatment. Additionally, caveolin-1 has been 

shown to inhibit many cancer-associated 

pathways that promote cancer cell growth, 

survival, invasion, and migration. While more 

research is needed in this area, these findings 

suggest that caveolin-1 modulation may hold 

great promise as a therapeutic strategy for 

breast cancer. Overall, manipulating 

caveolin-1 expression has the potential to 

become a significant addition to current breast 

cancer treatment regimens, and its 

effectiveness may be tested in clinical trials in 

the future. 
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